Learn more

Refine search


Results (17 matches)

  Download to        
Label Class Conductor Discriminant Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
169.a.169.1 169.a \( 13^{2} \) \( - 13^{2} \) $0$ $\Z/19\Z$ \(\mathrm{M}_2(\Q)\) $[4,793,3757,-21632]$ $[1,-33,-43,-283,-169]$ $[-1/169,33/169,43/169]$ $y^2 + (x^3 + x + 1)y = x^5 + x^4$
249.a.249.1 249.a \( 3 \cdot 83 \) \( 3 \cdot 83 \) $0$ $\Z/14\Z$ \(\Q\) $[108,57,2259,-31872]$ $[27,28,32,20,-249]$ $[-4782969/83,-183708/83,-7776/83]$ $y^2 + (x^3 + 1)y = x^2 + x$
277.a.277.1 277.a \( 277 \) \( 277 \) $0$ $\Z/15\Z$ \(\Q\) $[64,352,9552,-1108]$ $[32,-16,-464,-3776,-277]$ $[-33554432/277,524288/277,475136/277]$ $y^2 + (x^3 + x^2 + x + 1)y = -x^2 - x$
277.a.277.2 277.a \( 277 \) \( 277 \) $0$ $\Z/5\Z$ \(\Q\) $[4480,1370512,1511819744,-1108]$ $[2240,-19352,164384,-1569936,-277]$ $[-56394933862400000/277,217505333248000/277,-824813158400/277]$ $y^2 + y = x^5 - 9x^4 + 14x^3 - 19x^2 + 11x - 6$
294.a.294.1 294.a \( 2 \cdot 3 \cdot 7^{2} \) \( - 2 \cdot 3 \cdot 7^{2} \) $0$ $\Z/12\Z$ \(\Q \times \Q\) $[236,505,18451,37632]$ $[59,124,564,4475,294]$ $[714924299/294,12733498/147,327214/49]$ $y^2 + (x^3 + 1)y = x^4 + x^2$
295.a.295.1 295.a \( 5 \cdot 59 \) \( - 5 \cdot 59 \) $0$ $\Z/14\Z$ \(\Q\) $[108,-39,20835,37760]$ $[27,32,-256,-1984,295]$ $[14348907/295,629856/295,-186624/295]$ $y^2 + (x^3 + 1)y = -x^2$
295.a.295.2 295.a \( 5 \cdot 59 \) \( - 5 \cdot 59 \) $0$ $\Z/2\Z$ \(\Q\) $[198804,305807001,18482629056189,-37760]$ $[49701,90182600,203402032096,494095763610824,-295]$ $[-303267334973269931148501/295,-2214359494206283568520/59,-502441543825401014496/295]$ $y^2 + (x^2 + x + 1)y = x^5 - 40x^3 + 22x^2 + 389x - 608$
349.a.349.1 349.a \( 349 \) \( 349 \) $0$ $\Z/13\Z$ \(\Q\) $[8,208,1464,-1396]$ $[4,-34,-124,-413,-349]$ $[-1024/349,2176/349,1984/349]$ $y^2 + (x^3 + x^2 + x + 1)y = -x^3 - x^2$
353.a.353.1 353.a \( 353 \) \( -353 \) $0$ $\Z/11\Z$ \(\Q\) $[188,817,30871,45184]$ $[47,58,256,2167,353]$ $[229345007/353,6021734/353,565504/353]$ $y^2 + (x^3 + x + 1)y = x^2$
389.a.389.1 389.a \( 389 \) \( 389 \) $0$ $\Z/10\Z$ \(\Q\) $[2440,51100,45041351,1556]$ $[1220,53500,2084961,-79649395,389]$ $[2702708163200000/389,97147868000000/389,3103255952400/389]$ $y^2 + (x^3 + x)y = x^5 - 2x^4 - 8x^3 + 16x + 7$
389.a.389.2 389.a \( 389 \) \( 389 \) $0$ $\Z/10\Z$ \(\Q\) $[16,100,1775,1556]$ $[8,-14,-159,-367,389]$ $[32768/389,-7168/389,-10176/389]$ $y^2 + (x + 1)y = x^5 + 2x^4 + 2x^3 + x^2$
394.a.394.1 394.a \( 2 \cdot 197 \) \( 2 \cdot 197 \) $0$ $\Z/10\Z$ \(\Q\) $[11032,106300,393913607,1576]$ $[5516,1250044,371875905,122164372511,394]$ $[12960598758485504,532478222573696,28717744887720]$ $y^2 + (x^3 + x)y = 2x^5 + x^4 - 12x^3 + 17x - 9$
448.a.448.2 448.a \( 2^{6} \cdot 7 \) \( - 2^{6} \cdot 7 \) $0$ $\Z/12\Z$ \(\mathsf{CM} \times \Q\) $[828,16635,5308452,56]$ $[828,17476,-853888,-253107460,448]$ $[6080953884912/7,155007628668/7,-1306723104]$ $y^2 + (x^3 + x)y = -2x^4 + 7$
448.a.448.1 448.a \( 2^{6} \cdot 7 \) \( 2^{6} \cdot 7 \) $0$ $\Z/6\Z$ \(\mathsf{CM} \times \Q\) $[828,16635,5308452,56]$ $[828,17476,-853888,-253107460,448]$ $[6080953884912/7,155007628668/7,-1306723104]$ $y^2 + (x^3 + x)y = x^4 - 7$
461.a.461.1 461.a \( 461 \) \( 461 \) $0$ $\Z/7\Z$ \(\Q\) $[1176,144,66456,1844]$ $[588,14382,467132,16957923,461]$ $[70288881159168/461,2923824242304/461,161508086208/461]$ $y^2 + x^3y = x^5 - 3x^3 + 3x - 2$
461.a.461.2 461.a \( 461 \) \( 461 \) $0$ $\mathsf{trivial}$ \(\Q\) $[80664,166117104,3752725952952,1844]$ $[40332,40091742,45075737276,52661714805267,461]$ $[106720731303787612818432/461,2630293443843585469056/461,73323359651716069824/461]$ $y^2 + y = x^5 - x^4 - 39x^3 + 10x^2 + 272x - 306$
464.a.464.1 464.a \( 2^{4} \cdot 29 \) \( 2^{4} \cdot 29 \) $0$ $\Z/8\Z$ \(\Q\) $[136,280,15060,1856]$ $[68,146,-64,-6417,464]$ $[90870848/29,2869192/29,-18496/29]$ $y^2 + (x + 1)y = -x^6 - 2x^5 - 2x^4 - x^3$
  Download to