Properties

Label 994009.a.994009.1
Conductor $994009$
Discriminant $994009$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + x^3y = -4x^4 - 7x^3 - x^2 + 3x + 1$ (homogenize, simplify)
$y^2 + x^3y = -4x^4z^2 - 7x^3z^3 - x^2z^4 + 3xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = x^6 - 16x^4 - 28x^3 - 4x^2 + 12x + 4$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, 3, -1, -7, -4]), R([0, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, 3, -1, -7, -4], R![0, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([4, 12, -4, -28, -16, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(994009\) \(=\) \( 997^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(994009\) \(=\) \( 997^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(680\) \(=\)  \( 2^{3} \cdot 5 \cdot 17 \)
\( I_4 \)  \(=\) \(14932\) \(=\)  \( 2^{2} \cdot 3733 \)
\( I_6 \)  \(=\) \(2967104\) \(=\)  \( 2^{6} \cdot 7 \cdot 37 \cdot 179 \)
\( I_{10} \)  \(=\) \(3976036\) \(=\)  \( 2^{2} \cdot 997^{2} \)
\( J_2 \)  \(=\) \(340\) \(=\)  \( 2^{2} \cdot 5 \cdot 17 \)
\( J_4 \)  \(=\) \(2328\) \(=\)  \( 2^{3} \cdot 3 \cdot 97 \)
\( J_6 \)  \(=\) \(-3656\) \(=\)  \( - 2^{3} \cdot 457 \)
\( J_8 \)  \(=\) \(-1665656\) \(=\)  \( - 2^{3} \cdot 208207 \)
\( J_{10} \)  \(=\) \(994009\) \(=\)  \( 997^{2} \)
\( g_1 \)  \(=\) \(4543542400000/994009\)
\( g_2 \)  \(=\) \(91499712000/994009\)
\( g_3 \)  \(=\) \(-422633600/994009\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : 1 : 1)\)
\((1 : 8 : 2)\) \((-3 : 8 : 1)\) \((-1 : -8 : 3)\) \((-3 : 8 : 2)\) \((1 : -9 : 2)\) \((-1 : 9 : 3)\)
\((-3 : 19 : 1)\) \((-3 : 19 : 2)\) \((-5 : 53 : 2)\) \((-5 : 53 : 3)\) \((-5 : 72 : 2)\) \((-5 : 72 : 3)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : 1 : 1)\)
\((1 : 8 : 2)\) \((-3 : 8 : 1)\) \((-1 : -8 : 3)\) \((-3 : 8 : 2)\) \((1 : -9 : 2)\) \((-1 : 9 : 3)\)
\((-3 : 19 : 1)\) \((-3 : 19 : 2)\) \((-5 : 53 : 2)\) \((-5 : 53 : 3)\) \((-5 : 72 : 2)\) \((-5 : 72 : 3)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((0 : -2 : 1)\) \((0 : 2 : 1)\)
\((-3 : -11 : 1)\) \((-3 : 11 : 1)\) \((-3 : -11 : 2)\) \((-3 : 11 : 2)\) \((1 : -17 : 2)\) \((1 : 17 : 2)\)
\((-1 : -17 : 3)\) \((-1 : 17 : 3)\) \((-5 : -19 : 2)\) \((-5 : 19 : 2)\) \((-5 : -19 : 3)\) \((-5 : 19 : 3)\)

magma: [C![-5,53,2],C![-5,53,3],C![-5,72,2],C![-5,72,3],C![-3,8,1],C![-3,8,2],C![-3,19,1],C![-3,19,2],C![-1,-8,3],C![-1,0,1],C![-1,1,1],C![-1,9,3],C![0,-1,1],C![0,1,1],C![1,-9,2],C![1,-1,0],C![1,0,0],C![1,8,2]]; // minimal model
 
magma: [C![-5,-19,2],C![-5,-19,3],C![-5,19,2],C![-5,19,3],C![-3,-11,1],C![-3,-11,2],C![-3,11,1],C![-3,11,2],C![-1,-17,3],C![-1,-1,1],C![-1,1,1],C![-1,17,3],C![0,-2,1],C![0,2,1],C![1,-17,2],C![1,-1,0],C![1,1,0],C![1,17,2]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 + z^3\) \(0.949694\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.399356\) \(\infty\)
\((-1 : 1 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - z^3\) \(0.801047\) \(\infty\)
\((-1 : 0 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.691172\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 + z^3\) \(0.949694\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.399356\) \(\infty\)
\((-1 : 1 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - z^3\) \(0.801047\) \(\infty\)
\((-1 : 0 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.691172\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 + xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 2xz^2 + 2z^3\) \(0.949694\) \(\infty\)
\((-1 : -1 : 1) - (1 : 1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - 2z^3\) \(0.399356\) \(\infty\)
\((-1 : 1 : 1) + (0 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 4xz^2 - 2z^3\) \(0.801047\) \(\infty\)
\((-1 : -1 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3\) \(0.691172\) \(\infty\)

2-torsion field: 4.4.15952.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(4\)
Mordell-Weil rank: \(4\)
2-Selmer rank:\(4\)
Regulator: \( 0.142586 \)
Real period: \( 15.40967 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 2.197213 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(997\) \(2\) \(2\) \(1\) \(( 1 - T )^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.30.2 no
\(3\) 3.270.3 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 997.c
  Elliptic curve isogeny class 997.a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);