Properties

Label 99088.a.198176.1
Conductor $99088$
Discriminant $-198176$
Mordell-Weil group \(\Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2)y = -x^6 + 16x^4 - 112x^2 - 44x + 203$ (homogenize, simplify)
$y^2 + (x^3 + x^2z)y = -x^6 + 16x^4z^2 - 112x^2z^4 - 44xz^5 + 203z^6$ (dehomogenize, simplify)
$y^2 = -3x^6 + 2x^5 + 65x^4 - 448x^2 - 176x + 812$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([203, -44, -112, 0, 16, 0, -1]), R([0, 0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![203, -44, -112, 0, 16, 0, -1], R![0, 0, 1, 1]);
 
sage: X = HyperellipticCurve(R([812, -176, -448, 0, 65, 2, -3]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(99088\) \(=\) \( 2^{4} \cdot 11 \cdot 563 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-198176\) \(=\) \( - 2^{5} \cdot 11 \cdot 563 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(259120\) \(=\)  \( 2^{4} \cdot 5 \cdot 41 \cdot 79 \)
\( I_4 \)  \(=\) \(-110984072\) \(=\)  \( - 2^{3} \cdot 991 \cdot 13999 \)
\( I_6 \)  \(=\) \(-9341389746260\) \(=\)  \( - 2^{2} \cdot 5 \cdot 11 \cdot 13^{2} \cdot 5113 \cdot 49139 \)
\( I_{10} \)  \(=\) \(-792704\) \(=\)  \( - 2^{7} \cdot 11 \cdot 563 \)
\( J_2 \)  \(=\) \(129560\) \(=\)  \( 2^{3} \cdot 5 \cdot 41 \cdot 79 \)
\( J_4 \)  \(=\) \(717905412\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 7 \cdot 2848831 \)
\( J_6 \)  \(=\) \(5406417127940\) \(=\)  \( 2^{2} \cdot 5 \cdot 151 \cdot 367 \cdot 4877941 \)
\( J_8 \)  \(=\) \(46266805629254164\) \(=\)  \( 2^{2} \cdot 107 \cdot 2801237 \cdot 38590099 \)
\( J_{10} \)  \(=\) \(-198176\) \(=\)  \( - 2^{5} \cdot 11 \cdot 563 \)
\( g_1 \)  \(=\) \(-1140787406882816636800000/6193\)
\( g_2 \)  \(=\) \(-48789915619039907256000/6193\)
\( g_3 \)  \(=\) \(-2835968813284551037000/6193\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\Q_{2}$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 - 2xz - 29z^2\) \(=\) \(0,\) \(18y\) \(=\) \(-97xz^2 - 145z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 - 2xz - 29z^2\) \(=\) \(0,\) \(18y\) \(=\) \(-97xz^2 - 145z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 - 2xz - 29z^2\) \(=\) \(0,\) \(18y\) \(=\) \(x^3 + x^2z - 194xz^2 - 290z^3\) \(0\) \(2\)

2-torsion field: 6.2.216005498368.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(4\)
Regulator: \( 1 \)
Real period: \( 0.887547 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 1.775094 \)
Analytic order of Ш: \( 8 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(5\) \(1\) \(1 + T\)
\(11\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 4 T + 11 T^{2} )\)
\(563\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 20 T + 563 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.15.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);