Properties

Label 98326.a.196652.1
Conductor $98326$
Discriminant $-196652$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2 + x)y = x^3 - x^2 - 2x$ (homogenize, simplify)
$y^2 + (x^3 + x^2z + xz^2)y = x^3z^3 - x^2z^4 - 2xz^5$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^5 + 3x^4 + 6x^3 - 3x^2 - 8x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -2, -1, 1]), R([0, 1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -2, -1, 1], R![0, 1, 1, 1]);
 
sage: X = HyperellipticCurve(R([0, -8, -3, 6, 3, 2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(98326\) \(=\) \( 2 \cdot 211 \cdot 233 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-196652\) \(=\) \( - 2^{2} \cdot 211 \cdot 233 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(140\) \(=\)  \( 2^{2} \cdot 5 \cdot 7 \)
\( I_4 \)  \(=\) \(-1511\) \(=\)  \( -1511 \)
\( I_6 \)  \(=\) \(708419\) \(=\)  \( 191 \cdot 3709 \)
\( I_{10} \)  \(=\) \(25171456\) \(=\)  \( 2^{9} \cdot 211 \cdot 233 \)
\( J_2 \)  \(=\) \(35\) \(=\)  \( 5 \cdot 7 \)
\( J_4 \)  \(=\) \(114\) \(=\)  \( 2 \cdot 3 \cdot 19 \)
\( J_6 \)  \(=\) \(-10352\) \(=\)  \( - 2^{4} \cdot 647 \)
\( J_8 \)  \(=\) \(-93829\) \(=\)  \( - 101 \cdot 929 \)
\( J_{10} \)  \(=\) \(196652\) \(=\)  \( 2^{2} \cdot 211 \cdot 233 \)
\( g_1 \)  \(=\) \(52521875/196652\)
\( g_2 \)  \(=\) \(2443875/98326\)
\( g_3 \)  \(=\) \(-3170300/49163\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\)
\((2 : 0 : 1)\) \((1 : -2 : 1)\) \((-2 : 2 : 1)\) \((-2 : 4 : 1)\) \((-1 : -5 : 2)\) \((-1 : 8 : 2)\)
\((2 : -14 : 1)\) \((-1 : -104 : 6)\) \((-1 : 135 : 6)\) \((-50 : 15660 : 21)\) \((-50 : 78890 : 21)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\)
\((2 : 0 : 1)\) \((1 : -2 : 1)\) \((-2 : 2 : 1)\) \((-2 : 4 : 1)\) \((-1 : -5 : 2)\) \((-1 : 8 : 2)\)
\((2 : -14 : 1)\) \((-1 : -104 : 6)\) \((-1 : 135 : 6)\) \((-50 : 15660 : 21)\) \((-50 : 78890 : 21)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : 0 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\)
\((1 : 1 : 1)\) \((-2 : -2 : 1)\) \((-2 : 2 : 1)\) \((-1 : -13 : 2)\) \((-1 : 13 : 2)\) \((2 : -14 : 1)\)
\((2 : 14 : 1)\) \((-1 : -239 : 6)\) \((-1 : 239 : 6)\) \((-50 : -63230 : 21)\) \((-50 : 63230 : 21)\)

magma: [C![-50,15660,21],C![-50,78890,21],C![-2,2,1],C![-2,4,1],C![-1,-104,6],C![-1,-5,2],C![-1,0,1],C![-1,1,1],C![-1,8,2],C![-1,135,6],C![0,0,1],C![1,-2,1],C![1,-1,0],C![1,-1,1],C![1,0,0],C![2,-14,1],C![2,0,1]]; // minimal model
 
magma: [C![-50,-63230,21],C![-50,63230,21],C![-2,-2,1],C![-2,2,1],C![-1,-239,6],C![-1,-13,2],C![-1,-1,1],C![-1,1,1],C![-1,13,2],C![-1,239,6],C![0,0,1],C![1,-1,1],C![1,-1,0],C![1,1,1],C![1,1,0],C![2,-14,1],C![2,14,1]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-2 : 2 : 1) - (1 : -1 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(2z^3\) \(0.695818\) \(\infty\)
\((-1 : 0 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.449770\) \(\infty\)
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.103935\) \(\infty\)
Generator $D_0$ Height Order
\((-2 : 2 : 1) - (1 : -1 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(2z^3\) \(0.695818\) \(\infty\)
\((-1 : 0 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.449770\) \(\infty\)
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.103935\) \(\infty\)
Generator $D_0$ Height Order
\((-2 : -2 : 1) - (1 : -1 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + xz^2 + 4z^3\) \(0.695818\) \(\infty\)
\((-1 : -1 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + xz^2\) \(0.449770\) \(\infty\)
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + xz^2\) \(0.103935\) \(\infty\)

2-torsion field: 5.3.49163.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.030968 \)
Real period: \( 14.99104 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.928508 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + T + 2 T^{2} )\)
\(211\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 8 T + 211 T^{2} )\)
\(233\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 6 T + 233 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);