Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^2 + x + 1)y = -x^6 + 3x^5 - 3x^4 - x$ | (homogenize, simplify) |
$y^2 + (x^2z + xz^2 + z^3)y = -x^6 + 3x^5z - 3x^4z^2 - xz^5$ | (dehomogenize, simplify) |
$y^2 = -4x^6 + 12x^5 - 11x^4 + 2x^3 + 3x^2 - 2x + 1$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(980\) | \(=\) | \( 2^{2} \cdot 5 \cdot 7^{2} \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(7840\) | \(=\) | \( 2^{5} \cdot 5 \cdot 7^{2} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(276\) | \(=\) | \( 2^{2} \cdot 3 \cdot 23 \) |
\( I_4 \) | \(=\) | \(3945\) | \(=\) | \( 3 \cdot 5 \cdot 263 \) |
\( I_6 \) | \(=\) | \(280149\) | \(=\) | \( 3 \cdot 93383 \) |
\( I_{10} \) | \(=\) | \(1003520\) | \(=\) | \( 2^{12} \cdot 5 \cdot 7^{2} \) |
\( J_2 \) | \(=\) | \(69\) | \(=\) | \( 3 \cdot 23 \) |
\( J_4 \) | \(=\) | \(34\) | \(=\) | \( 2 \cdot 17 \) |
\( J_6 \) | \(=\) | \(20\) | \(=\) | \( 2^{2} \cdot 5 \) |
\( J_8 \) | \(=\) | \(56\) | \(=\) | \( 2^{3} \cdot 7 \) |
\( J_{10} \) | \(=\) | \(7840\) | \(=\) | \( 2^{5} \cdot 5 \cdot 7^{2} \) |
\( g_1 \) | \(=\) | \(1564031349/7840\) | ||
\( g_2 \) | \(=\) | \(5584653/3920\) | ||
\( g_3 \) | \(=\) | \(4761/392\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2^2$ |
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{12}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(2 \cdot(1 : -1 : 1) - D_\infty\) | \((x - z)^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2\) | \(0\) | \(12\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(2 \cdot(1 : -1 : 1) - D_\infty\) | \((x - z)^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2\) | \(0\) | \(12\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(2 \cdot(1 : 1 : 1) - D_\infty\) | \((x - z)^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^2z - xz^2 + z^3\) | \(0\) | \(12\) |
2-torsion field: 8.0.96040000.1
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 1 \) |
Real period: | \( 14.03151 \) |
Tamagawa product: | \( 4 \) |
Torsion order: | \( 12 \) |
Leading coefficient: | \( 0.389764 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \(5\) | \(4\) | \(-1^*\) | \(( 1 - T )( 1 + T )\) | yes | |
\(5\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 5 T^{2} )\) | yes | |
\(7\) | \(2\) | \(2\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + T )\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.45.1 | yes |
\(3\) | 3.720.4 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 70.a
Elliptic curve isogeny class 14.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).