Properties

Label 95332.a.381328.1
Conductor $95332$
Discriminant $-381328$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2 + x + 1)y = x^5 - 4x^3 - x^2 + x$ (homogenize, simplify)
$y^2 + (x^3 + x^2z + xz^2 + z^3)y = x^5z - 4x^3z^3 - x^2z^4 + xz^5$ (dehomogenize, simplify)
$y^2 = x^6 + 6x^5 + 3x^4 - 12x^3 - x^2 + 6x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, -1, -4, 0, 1]), R([1, 1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, -1, -4, 0, 1], R![1, 1, 1, 1]);
 
sage: X = HyperellipticCurve(R([1, 6, -1, -12, 3, 6, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(95332\) \(=\) \( 2^{2} \cdot 23833 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-381328\) \(=\) \( - 2^{4} \cdot 23833 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(264\) \(=\)  \( 2^{3} \cdot 3 \cdot 11 \)
\( I_4 \)  \(=\) \(2661\) \(=\)  \( 3 \cdot 887 \)
\( I_6 \)  \(=\) \(188655\) \(=\)  \( 3 \cdot 5 \cdot 12577 \)
\( I_{10} \)  \(=\) \(-47666\) \(=\)  \( - 2 \cdot 23833 \)
\( J_2 \)  \(=\) \(264\) \(=\)  \( 2^{3} \cdot 3 \cdot 11 \)
\( J_4 \)  \(=\) \(1130\) \(=\)  \( 2 \cdot 5 \cdot 113 \)
\( J_6 \)  \(=\) \(4992\) \(=\)  \( 2^{7} \cdot 3 \cdot 13 \)
\( J_8 \)  \(=\) \(10247\) \(=\)  \( 10247 \)
\( J_{10} \)  \(=\) \(-381328\) \(=\)  \( - 2^{4} \cdot 23833 \)
\( g_1 \)  \(=\) \(-80149284864/23833\)
\( g_2 \)  \(=\) \(-1299481920/23833\)
\( g_3 \)  \(=\) \(-21745152/23833\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((1 : -1 : 2)\) \((-2 : 2 : 1)\) \((1 : -3 : 1)\) \((-2 : 3 : 1)\) \((3 : 3 : 1)\)
\((-2 : -6 : 3)\) \((-2 : -7 : 3)\) \((1 : -14 : 2)\) \((3 : -43 : 1)\) \((-5 : 45 : 1)\) \((-5 : 59 : 1)\)
\((-1 : -74 : 6)\) \((-1 : -111 : 6)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((1 : -1 : 2)\) \((-2 : 2 : 1)\) \((1 : -3 : 1)\) \((-2 : 3 : 1)\) \((3 : 3 : 1)\)
\((-2 : -6 : 3)\) \((-2 : -7 : 3)\) \((1 : -14 : 2)\) \((3 : -43 : 1)\) \((-5 : 45 : 1)\) \((-5 : 59 : 1)\)
\((-1 : -74 : 6)\) \((-1 : -111 : 6)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-2 : -1 : 1)\) \((-2 : 1 : 1)\)
\((-1 : -2 : 1)\) \((-1 : 2 : 1)\) \((1 : -2 : 1)\) \((1 : 2 : 1)\) \((-2 : -1 : 3)\) \((-2 : 1 : 3)\)
\((1 : -13 : 2)\) \((1 : 13 : 2)\) \((-5 : -14 : 1)\) \((-5 : 14 : 1)\) \((-1 : -37 : 6)\) \((-1 : 37 : 6)\)
\((3 : -46 : 1)\) \((3 : 46 : 1)\)

magma: [C![-5,45,1],C![-5,59,1],C![-2,-7,3],C![-2,-6,3],C![-2,2,1],C![-2,3,1],C![-1,-111,6],C![-1,-74,6],C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-14,2],C![1,-3,1],C![1,-1,0],C![1,-1,1],C![1,-1,2],C![1,0,0],C![3,-43,1],C![3,3,1]]; // minimal model
 
magma: [C![-5,-14,1],C![-5,14,1],C![-2,-1,3],C![-2,1,3],C![-2,-1,1],C![-2,1,1],C![-1,-37,6],C![-1,37,6],C![-1,-2,1],C![-1,2,1],C![0,-1,1],C![0,1,1],C![1,-13,2],C![1,-2,1],C![1,-1,0],C![1,2,1],C![1,13,2],C![1,1,0],C![3,-46,1],C![3,46,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : -1 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(0.322349\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.317001\) \(\infty\)
\((-1 : -1 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - 2z^3\) \(0.188380\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(0.322349\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.317001\) \(\infty\)
\((-1 : -1 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - 2z^3\) \(0.188380\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -2 : 1) + (0 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + 3xz^2 + z^3\) \(0.322349\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + xz^2 - z^3\) \(0.317001\) \(\infty\)
\((-1 : -2 : 1) - (1 : 1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + x^2z + xz^2 - 3z^3\) \(0.188380\) \(\infty\)

2-torsion field: 6.4.6101248.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.016698 \)
Real period: \( 17.49582 \)
Tamagawa product: \( 3 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.876445 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(4\) \(3\) \(1 + 2 T + 2 T^{2}\)
\(23833\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 70 T + 23833 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);