# Properties

 Label 953.a.953.1 Conductor 953 Discriminant -953 Mordell-Weil group $$\Z$$ Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

Show commands for: Magma / SageMath

## Simplified equation

 $y^2 + (x^3 + x + 1)y = x^3 + x^2$ (homogenize, simplify) $y^2 + (x^3 + xz^2 + z^3)y = x^3z^3 + x^2z^4$ (dehomogenize, simplify) $y^2 = x^6 + 2x^4 + 6x^3 + 5x^2 + 2x + 1$ (minimize, homogenize)

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, 1, 1], R![1, 1, 0, 1]);

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, 1, 1]), R([1, 1, 0, 1]));

magma: X,pi:= SimplifiedModel(C);

sage: X = HyperellipticCurve(R([1, 2, 5, 6, 2, 0, 1]))

## Invariants

 Conductor: $$N$$ = $$953$$ = $$953$$ magma: Conductor(LSeries(C)); Factorization($1); Discriminant: $$\Delta$$ = $$-953$$ = $$- 953$$ magma: Discriminant(C); Factorization(Integers()!$1);

### G2 invariants

 $$I_2$$ = $$-184$$ = $$- 2^{3} \cdot 23$$ $$I_4$$ = $$6052$$ = $$2^{2} \cdot 17 \cdot 89$$ $$I_6$$ = $$-209624$$ = $$- 2^{3} \cdot 26203$$ $$I_{10}$$ = $$-3903488$$ = $$- 2^{12} \cdot 953$$ $$J_2$$ = $$-23$$ = $$- 23$$ $$J_4$$ = $$-41$$ = $$- 41$$ $$J_6$$ = $$-67$$ = $$- 67$$ $$J_8$$ = $$-35$$ = $$- 5 \cdot 7$$ $$J_{10}$$ = $$-953$$ = $$- 953$$ $$g_1$$ = $$6436343/953$$ $$g_2$$ = $$-498847/953$$ $$g_3$$ = $$35443/953$$

magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]

## Automorphism group

 $$\mathrm{Aut}(X)$$ $$\simeq$$ $C_2$ magma: AutomorphismGroup(C); IdentifyGroup($1); $$\mathrm{Aut}(X_{\overline{\Q}})$$ $$\simeq$$$C_2$magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);

## Rational points

All points
$$(1 : 0 : 0)$$ $$(1 : -1 : 0)$$ $$(0 : 0 : 1)$$ $$(-1 : 0 : 1)$$ $$(0 : -1 : 1)$$ $$(-1 : 1 : 1)$$
$$(2 : 1 : 1)$$ $$(2 : -12 : 1)$$

magma: [C![-1,0,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,0,0],C![2,-12,1],C![2,1,1]];

Number of rational Weierstrass points: $$0$$

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

## Mordell-Weil group of the Jacobian:

Group structure: $$\Z$$

magma: MordellWeilGroupGenus2(Jacobian(C));

Generator $D_0$ Height Order
$$(0 : 0 : 1) - (1 : -1 : 0)$$ $$z x$$ $$=$$ $$0,$$ $$y$$ $$=$$ $$0$$ $$0.006276$$ $$\infty$$

## BSD invariants

 Hasse-Weil conjecture: unverified Analytic rank: $$1$$ Mordell-Weil rank: $$1$$ 2-Selmer rank: $$1$$ Regulator: $$0.006276$$ Real period: $$24.88668$$ Tamagawa product: $$1$$ Torsion order: $$1$$ Leading coefficient: $$0.156193$$ Analytic order of Ш: $$1$$   (rounded) Order of Ш: square

## Local invariants

Prime ord($$N$$) ord($$\Delta$$) Tamagawa L-factor
$$953$$ $$1$$ $$1$$ $$1$$ $$( 1 - T )( 1 - 6 T + 953 T^{2} )$$

## Sato-Tate group

 $$\mathrm{ST}$$ $$\simeq$$ $\mathrm{USp}(4)$ $$\mathrm{ST}^0$$ $$\simeq$$ $$\mathrm{USp}(4)$$

## Decomposition of the Jacobian

Simple over $$\overline{\Q}$$

## Endomorphisms of the Jacobian

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism ring over $$\Q$$:

 $$\End (J_{})$$ $$\simeq$$ $$\Z$$ $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.