Properties

Label 94165.a.470825.1
Conductor $94165$
Discriminant $-470825$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2 + 1)y = 4x^4 + 3x^3 - 2x^2 - x$ (homogenize, simplify)
$y^2 + (x^3 + x^2z + z^3)y = 4x^4z^2 + 3x^3z^3 - 2x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^5 + 17x^4 + 14x^3 - 6x^2 - 4x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, -2, 3, 4]), R([1, 0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, -2, 3, 4], R![1, 0, 1, 1]);
 
sage: X = HyperellipticCurve(R([1, -4, -6, 14, 17, 2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(94165\) \(=\) \( 5 \cdot 37 \cdot 509 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-470825\) \(=\) \( - 5^{2} \cdot 37 \cdot 509 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1124\) \(=\)  \( 2^{2} \cdot 281 \)
\( I_4 \)  \(=\) \(109993\) \(=\)  \( 13 \cdot 8461 \)
\( I_6 \)  \(=\) \(28159493\) \(=\)  \( 29 \cdot 83 \cdot 11699 \)
\( I_{10} \)  \(=\) \(-60265600\) \(=\)  \( - 2^{7} \cdot 5^{2} \cdot 37 \cdot 509 \)
\( J_2 \)  \(=\) \(281\) \(=\)  \( 281 \)
\( J_4 \)  \(=\) \(-1293\) \(=\)  \( - 3 \cdot 431 \)
\( J_6 \)  \(=\) \(17989\) \(=\)  \( 17989 \)
\( J_8 \)  \(=\) \(845765\) \(=\)  \( 5 \cdot 47 \cdot 59 \cdot 61 \)
\( J_{10} \)  \(=\) \(-470825\) \(=\)  \( - 5^{2} \cdot 37 \cdot 509 \)
\( g_1 \)  \(=\) \(-1751989905401/470825\)
\( g_2 \)  \(=\) \(28689137013/470825\)
\( g_3 \)  \(=\) \(-1420429429/470825\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\)
\((1 : 1 : 1)\) \((-1 : -1 : 2)\) \((1 : -3 : 2)\) \((1 : -4 : 1)\) \((-1 : -8 : 2)\) \((1 : -8 : 2)\)
\((-2 : -13 : 3)\) \((-2 : -18 : 3)\) \((6 : 21 : 1)\) \((-5 : -53 : 2)\) \((-5 : 120 : 2)\) \((6 : -274 : 1)\)
\((3 : -1445 : 17)\) \((3 : -3648 : 17)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\)
\((1 : 1 : 1)\) \((-1 : -1 : 2)\) \((1 : -3 : 2)\) \((1 : -4 : 1)\) \((-1 : -8 : 2)\) \((1 : -8 : 2)\)
\((-2 : -13 : 3)\) \((-2 : -18 : 3)\) \((6 : 21 : 1)\) \((-5 : -53 : 2)\) \((-5 : 120 : 2)\) \((6 : -274 : 1)\)
\((3 : -1445 : 17)\) \((3 : -3648 : 17)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -5 : 1)\) \((1 : 5 : 1)\) \((1 : -5 : 2)\) \((1 : 5 : 2)\) \((-2 : -5 : 3)\) \((-2 : 5 : 3)\)
\((-1 : -7 : 2)\) \((-1 : 7 : 2)\) \((-5 : -173 : 2)\) \((-5 : 173 : 2)\) \((6 : -295 : 1)\) \((6 : 295 : 1)\)
\((3 : -2203 : 17)\) \((3 : 2203 : 17)\)

magma: [C![-5,-53,2],C![-5,120,2],C![-2,-18,3],C![-2,-13,3],C![-1,-8,2],C![-1,-1,1],C![-1,-1,2],C![-1,0,1],C![0,-1,1],C![0,0,1],C![1,-8,2],C![1,-4,1],C![1,-3,2],C![1,-1,0],C![1,0,0],C![1,1,1],C![3,-3648,17],C![3,-1445,17],C![6,-274,1],C![6,21,1]]; // minimal model
 
magma: [C![-5,-173,2],C![-5,173,2],C![-2,-5,3],C![-2,5,3],C![-1,-7,2],C![-1,-1,1],C![-1,7,2],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,-5,2],C![1,-5,1],C![1,5,2],C![1,-1,0],C![1,1,0],C![1,5,1],C![3,-2203,17],C![3,2203,17],C![6,-295,1],C![6,295,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : 1 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(z^3\) \(0.477576\) \(\infty\)
\((-1 : 0 : 1) + (1 : -4 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - 2z^3\) \(0.244834\) \(\infty\)
\((0 : -1 : 1) + (1 : 1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2 - z^3\) \(0.170721\) \(\infty\)
Generator $D_0$ Height Order
\((1 : 1 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(z^3\) \(0.477576\) \(\infty\)
\((-1 : 0 : 1) + (1 : -4 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - 2z^3\) \(0.244834\) \(\infty\)
\((0 : -1 : 1) + (1 : 1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2 - z^3\) \(0.170721\) \(\infty\)
Generator $D_0$ Height Order
\((1 : 5 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + 3z^3\) \(0.477576\) \(\infty\)
\((-1 : 1 : 1) + (1 : -5 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z - 4xz^2 - 3z^3\) \(0.244834\) \(\infty\)
\((0 : -1 : 1) + (1 : 5 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + 4xz^2 - z^3\) \(0.170721\) \(\infty\)

2-torsion field: 6.4.1205312.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.018038 \)
Real period: \( 18.42404 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.664668 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(5\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 3 T + 5 T^{2} )\)
\(37\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 10 T + 37 T^{2} )\)
\(509\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 9 T + 509 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);