Minimal equation
Minimal equation
Simplified equation
$y^2 + y = x^6 - 2x^5 + x^4 + x^2 - x$ | (homogenize, simplify) |
$y^2 + z^3y = x^6 - 2x^5z + x^4z^2 + x^2z^4 - xz^5$ | (dehomogenize, simplify) |
$y^2 = 4x^6 - 8x^5 + 4x^4 + 4x^2 - 4x + 1$ | (homogenize, minimize) |
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 1, 0, 1, -2, 1]), R([1]));
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 1, 0, 1, -2, 1], R![1]);
sage: X = HyperellipticCurve(R([1, -4, 4, 0, 4, -8, 4]))
magma: X,pi:= SimplifiedModel(C);
Invariants
Conductor: | \( N \) | \(=\) | \(932\) | \(=\) | \( 2^{2} \cdot 233 \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(-3728\) | \(=\) | \( - 2^{4} \cdot 233 \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(8\) | \(=\) | \( 2^{3} \) |
\( I_4 \) | \(=\) | \(229\) | \(=\) | \( 229 \) |
\( I_6 \) | \(=\) | \(527\) | \(=\) | \( 17 \cdot 31 \) |
\( I_{10} \) | \(=\) | \(-466\) | \(=\) | \( - 2 \cdot 233 \) |
\( J_2 \) | \(=\) | \(8\) | \(=\) | \( 2^{3} \) |
\( J_4 \) | \(=\) | \(-150\) | \(=\) | \( - 2 \cdot 3 \cdot 5^{2} \) |
\( J_6 \) | \(=\) | \(-128\) | \(=\) | \( - 2^{7} \) |
\( J_8 \) | \(=\) | \(-5881\) | \(=\) | \( -5881 \) |
\( J_{10} \) | \(=\) | \(-3728\) | \(=\) | \( - 2^{4} \cdot 233 \) |
\( g_1 \) | \(=\) | \(-2048/233\) | ||
\( g_2 \) | \(=\) | \(4800/233\) | ||
\( g_3 \) | \(=\) | \(512/233\) |
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
All points | |||||
---|---|---|---|---|---|
\((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((0 : 0 : 1)\) | \((0 : -1 : 1)\) | \((1 : 0 : 1)\) | \((1 : -1 : 1)\) |
\((-1 : 2 : 1)\) | \((-1 : -3 : 1)\) | \((1 : -3 : 2)\) | \((1 : -5 : 2)\) |
All points | |||||
---|---|---|---|---|---|
\((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((0 : 0 : 1)\) | \((0 : -1 : 1)\) | \((1 : 0 : 1)\) | \((1 : -1 : 1)\) |
\((-1 : 2 : 1)\) | \((-1 : -3 : 1)\) | \((1 : -3 : 2)\) | \((1 : -5 : 2)\) |
All points | |||||
---|---|---|---|---|---|
\((1 : -2 : 0)\) | \((1 : 2 : 0)\) | \((0 : -1 : 1)\) | \((0 : 1 : 1)\) | \((1 : -1 : 1)\) | \((1 : 1 : 1)\) |
\((1 : -2 : 2)\) | \((1 : 2 : 2)\) | \((-1 : -5 : 1)\) | \((-1 : 5 : 1)\) |
magma: [C![-1,-3,1],C![-1,2,1],C![0,-1,1],C![0,0,1],C![1,-5,2],C![1,-3,2],C![1,-1,0],C![1,-1,1],C![1,0,1],C![1,1,0]]; // minimal model
magma: [C![-1,-5,1],C![-1,5,1],C![0,-1,1],C![0,1,1],C![1,-2,2],C![1,2,2],C![1,-2,0],C![1,-1,1],C![1,1,1],C![1,2,0]]; // simplified model
Number of rational Weierstrass points: \(0\)
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
This curve is locally solvable everywhere.
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
Mordell-Weil group of the Jacobian
Group structure: \(\Z\)
magma: MordellWeilGroupGenus2(Jacobian(C));
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((1 : -1 : 1) - (1 : 1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3\) | \(0.002249\) | \(\infty\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((1 : -1 : 1) - (1 : 1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-x^3\) | \(0.002249\) | \(\infty\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((1 : -1 : 1) - (1 : 2 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2x^3 + z^3\) | \(0.002249\) | \(\infty\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(1\) |
Mordell-Weil rank: | \(1\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 0.002249 \) |
Real period: | \( 25.16836 \) |
Tamagawa product: | \( 3 \) |
Torsion order: | \( 1 \) |
Leading coefficient: | \( 0.169871 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(2\) | \(2\) | \(4\) | \(3\) | \(1 + 2 T + 2 T^{2}\) | |
\(233\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 19 T + 233 T^{2} )\) |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.10.1 | no |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
magma: HeuristicDecompositionFactors(C);
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);