Properties

Label 91771.a.91771.1
Conductor $91771$
Discriminant $-91771$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = x^5 + x^4 - x^2 - x$ (homogenize, simplify)
$y^2 + z^3y = x^5z + x^4z^2 - x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = 4x^5 + 4x^4 - 4x^2 - 4x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, -1, 0, 1, 1]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, -1, 0, 1, 1], R![1]);
 
sage: X = HyperellipticCurve(R([1, -4, -4, 0, 4, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(91771\) \(=\) \( 91771 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-91771\) \(=\) \( -91771 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(96\) \(=\)  \( 2^{5} \cdot 3 \)
\( I_4 \)  \(=\) \(-2160\) \(=\)  \( - 2^{4} \cdot 3^{3} \cdot 5 \)
\( I_6 \)  \(=\) \(-15984\) \(=\)  \( - 2^{4} \cdot 3^{3} \cdot 37 \)
\( I_{10} \)  \(=\) \(367084\) \(=\)  \( 2^{2} \cdot 91771 \)
\( J_2 \)  \(=\) \(48\) \(=\)  \( 2^{4} \cdot 3 \)
\( J_4 \)  \(=\) \(456\) \(=\)  \( 2^{3} \cdot 3 \cdot 19 \)
\( J_6 \)  \(=\) \(-2768\) \(=\)  \( - 2^{4} \cdot 173 \)
\( J_8 \)  \(=\) \(-85200\) \(=\)  \( - 2^{4} \cdot 3 \cdot 5^{2} \cdot 71 \)
\( J_{10} \)  \(=\) \(91771\) \(=\)  \( 91771 \)
\( g_1 \)  \(=\) \(254803968/91771\)
\( g_2 \)  \(=\) \(50429952/91771\)
\( g_3 \)  \(=\) \(-6377472/91771\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((-1 : -1 : 1)\)
\((1 : -1 : 1)\) \((2 : 6 : 1)\) \((2 : -7 : 1)\) \((-3 : 14 : 4)\) \((4 : 35 : 1)\) \((4 : -36 : 1)\)
\((-3 : -78 : 4)\) \((1 : -105 : 9)\) \((1 : -624 : 9)\)
Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((-1 : -1 : 1)\)
\((1 : -1 : 1)\) \((2 : 6 : 1)\) \((2 : -7 : 1)\) \((-3 : 14 : 4)\) \((4 : 35 : 1)\) \((4 : -36 : 1)\)
\((-3 : -78 : 4)\) \((1 : -105 : 9)\) \((1 : -624 : 9)\)
Known points
\((1 : 0 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\)
\((1 : 1 : 1)\) \((2 : -13 : 1)\) \((2 : 13 : 1)\) \((4 : -71 : 1)\) \((4 : 71 : 1)\) \((-3 : -92 : 4)\)
\((-3 : 92 : 4)\) \((1 : -519 : 9)\) \((1 : 519 : 9)\)

magma: [C![-3,-78,4],C![-3,14,4],C![-1,-1,1],C![-1,0,1],C![0,-1,1],C![0,0,1],C![1,-624,9],C![1,-105,9],C![1,-1,1],C![1,0,0],C![1,0,1],C![2,-7,1],C![2,6,1],C![4,-36,1],C![4,35,1]]; // minimal model
 
magma: [C![-3,-92,4],C![-3,92,4],C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,-519,9],C![1,519,9],C![1,-1,1],C![1,0,0],C![1,1,1],C![2,-13,1],C![2,13,1],C![4,-71,1],C![4,71,1]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : -1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.685044\) \(\infty\)
\((-1 : -1 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.532129\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.217433\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.685044\) \(\infty\)
\((-1 : -1 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.532129\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.217433\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.685044\) \(\infty\)
\((-1 : -1 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.532129\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.217433\) \(\infty\)

2-torsion field: 5.3.1468336.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.065991 \)
Real period: \( 13.22064 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.872444 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(91771\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 235 T + 91771 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);