Properties

Label 91484.a.365936.1
Conductor $91484$
Discriminant $365936$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + x^3y = -2x^4 + 7x^2 - 6x + 1$ (homogenize, simplify)
$y^2 + x^3y = -2x^4z^2 + 7x^2z^4 - 6xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = x^6 - 8x^4 + 28x^2 - 24x + 4$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, -6, 7, 0, -2]), R([0, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, -6, 7, 0, -2], R![0, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([4, -24, 28, 0, -8, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(91484\) \(=\) \( 2^{2} \cdot 22871 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(365936\) \(=\) \( 2^{4} \cdot 22871 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(328\) \(=\)  \( 2^{3} \cdot 41 \)
\( I_4 \)  \(=\) \(3925\) \(=\)  \( 5^{2} \cdot 157 \)
\( I_6 \)  \(=\) \(331447\) \(=\)  \( 331447 \)
\( I_{10} \)  \(=\) \(45742\) \(=\)  \( 2 \cdot 22871 \)
\( J_2 \)  \(=\) \(328\) \(=\)  \( 2^{3} \cdot 41 \)
\( J_4 \)  \(=\) \(1866\) \(=\)  \( 2 \cdot 3 \cdot 311 \)
\( J_6 \)  \(=\) \(25472\) \(=\)  \( 2^{7} \cdot 199 \)
\( J_8 \)  \(=\) \(1218215\) \(=\)  \( 5 \cdot 243643 \)
\( J_{10} \)  \(=\) \(365936\) \(=\)  \( 2^{4} \cdot 22871 \)
\( g_1 \)  \(=\) \(237273499648/22871\)
\( g_2 \)  \(=\) \(4115410752/22871\)
\( g_3 \)  \(=\) \(171273728/22871\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\) \((1 : -1 : 1)\)
\((-2 : -1 : 1)\) \((-1 : -3 : 1)\) \((2 : -3 : 1)\) \((-1 : 4 : 1)\) \((2 : -5 : 1)\) \((3 : -8 : 2)\)
\((-2 : 9 : 1)\) \((-5 : 9 : 1)\) \((3 : -19 : 2)\) \((-5 : 116 : 1)\) \((8 : -125 : 3)\) \((8 : -387 : 3)\)
\((12 : -503 : 5)\) \((12 : -1225 : 5)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\) \((1 : -1 : 1)\)
\((-2 : -1 : 1)\) \((-1 : -3 : 1)\) \((2 : -3 : 1)\) \((-1 : 4 : 1)\) \((2 : -5 : 1)\) \((3 : -8 : 2)\)
\((-2 : 9 : 1)\) \((-5 : 9 : 1)\) \((3 : -19 : 2)\) \((-5 : 116 : 1)\) \((8 : -125 : 3)\) \((8 : -387 : 3)\)
\((12 : -503 : 5)\) \((12 : -1225 : 5)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\) \((0 : -2 : 1)\) \((0 : 2 : 1)\)
\((2 : -2 : 1)\) \((2 : 2 : 1)\) \((-1 : -7 : 1)\) \((-1 : 7 : 1)\) \((-2 : -10 : 1)\) \((-2 : 10 : 1)\)
\((3 : -11 : 2)\) \((3 : 11 : 2)\) \((-5 : -107 : 1)\) \((-5 : 107 : 1)\) \((8 : -262 : 3)\) \((8 : 262 : 3)\)
\((12 : -722 : 5)\) \((12 : 722 : 5)\)

magma: [C![-5,9,1],C![-5,116,1],C![-2,-1,1],C![-2,9,1],C![-1,-3,1],C![-1,4,1],C![0,-1,1],C![0,1,1],C![1,-1,0],C![1,-1,1],C![1,0,0],C![1,0,1],C![2,-5,1],C![2,-3,1],C![3,-19,2],C![3,-8,2],C![8,-387,3],C![8,-125,3],C![12,-1225,5],C![12,-503,5]]; // minimal model
 
magma: [C![-5,-107,1],C![-5,107,1],C![-2,-10,1],C![-2,10,1],C![-1,-7,1],C![-1,7,1],C![0,-2,1],C![0,2,1],C![1,-1,0],C![1,-1,1],C![1,1,0],C![1,1,1],C![2,-2,1],C![2,2,1],C![3,-11,2],C![3,11,2],C![8,-262,3],C![8,262,3],C![12,-722,5],C![12,722,5]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.451464\) \(\infty\)
\((2 : -5 : 1) - (1 : 0 : 0)\) \(z (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + 3z^3\) \(0.195347\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.211961\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.451464\) \(\infty\)
\((2 : -5 : 1) - (1 : 0 : 0)\) \(z (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + 3z^3\) \(0.195347\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.211961\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3\) \(0.451464\) \(\infty\)
\((2 : -2 : 1) - (1 : 1 : 0)\) \(z (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + 6z^3\) \(0.195347\) \(\infty\)
\((0 : -2 : 1) - (1 : 1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - 2z^3\) \(0.211961\) \(\infty\)

2-torsion field: 6.2.5854976.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.015925 \)
Real period: \( 18.04462 \)
Tamagawa product: \( 3 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.862102 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(4\) \(3\) \(1 + 2 T + 2 T^{2}\)
\(22871\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 245 T + 22871 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);