Properties

Label 90963.d.818667.1
Conductor $90963$
Discriminant $-818667$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = x^5 + 3x^4$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = x^5z + 3x^4z^2$ (dehomogenize, simplify)
$y^2 = x^6 + 4x^5 + 14x^4 + 2x^3 + x^2 + 2x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, 0, 0, 3, 1]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, 0, 0, 3, 1], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 2, 1, 2, 14, 4, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(90963\) \(=\) \( 3^{4} \cdot 1123 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-818667\) \(=\) \( - 3^{6} \cdot 1123 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(20\) \(=\)  \( 2^{2} \cdot 5 \)
\( I_4 \)  \(=\) \(3105\) \(=\)  \( 3^{3} \cdot 5 \cdot 23 \)
\( I_6 \)  \(=\) \(3969\) \(=\)  \( 3^{4} \cdot 7^{2} \)
\( I_{10} \)  \(=\) \(431232\) \(=\)  \( 2^{7} \cdot 3 \cdot 1123 \)
\( J_2 \)  \(=\) \(15\) \(=\)  \( 3 \cdot 5 \)
\( J_4 \)  \(=\) \(-1155\) \(=\)  \( - 3 \cdot 5 \cdot 7 \cdot 11 \)
\( J_6 \)  \(=\) \(3371\) \(=\)  \( 3371 \)
\( J_8 \)  \(=\) \(-320865\) \(=\)  \( - 3 \cdot 5 \cdot 21391 \)
\( J_{10} \)  \(=\) \(818667\) \(=\)  \( 3^{6} \cdot 1123 \)
\( g_1 \)  \(=\) \(3125/3369\)
\( g_2 \)  \(=\) \(-48125/10107\)
\( g_3 \)  \(=\) \(84275/90963\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((1 : 1 : 1)\)
\((-1 : 2 : 1)\) \((1 : 1 : 2)\) \((-1 : 2 : 2)\) \((-3 : 0 : 1)\) \((1 : -4 : 1)\) \((-1 : -5 : 2)\)
\((2 : 5 : 1)\) \((-2 : 13 : 5)\) \((1 : -14 : 2)\) \((2 : -16 : 1)\) \((-3 : 29 : 1)\) \((-2 : -80 : 5)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((1 : 1 : 1)\)
\((-1 : 2 : 1)\) \((1 : 1 : 2)\) \((-1 : 2 : 2)\) \((-3 : 0 : 1)\) \((1 : -4 : 1)\) \((-1 : -5 : 2)\)
\((2 : 5 : 1)\) \((-2 : 13 : 5)\) \((1 : -14 : 2)\) \((2 : -16 : 1)\) \((-3 : 29 : 1)\) \((-2 : -80 : 5)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -3 : 1)\) \((-1 : 3 : 1)\)
\((1 : -5 : 1)\) \((1 : 5 : 1)\) \((-1 : -7 : 2)\) \((-1 : 7 : 2)\) \((1 : -15 : 2)\) \((1 : 15 : 2)\)
\((2 : -21 : 1)\) \((2 : 21 : 1)\) \((-3 : -29 : 1)\) \((-3 : 29 : 1)\) \((-2 : -93 : 5)\) \((-2 : 93 : 5)\)

magma: [C![-3,0,1],C![-3,29,1],C![-2,-80,5],C![-2,13,5],C![-1,-5,2],C![-1,-1,1],C![-1,2,1],C![-1,2,2],C![0,-1,1],C![0,0,1],C![1,-14,2],C![1,-4,1],C![1,-1,0],C![1,0,0],C![1,1,1],C![1,1,2],C![2,-16,1],C![2,5,1]]; // minimal model
 
magma: [C![-3,-29,1],C![-3,29,1],C![-2,-93,5],C![-2,93,5],C![-1,-7,2],C![-1,-3,1],C![-1,3,1],C![-1,7,2],C![0,-1,1],C![0,1,1],C![1,-15,2],C![1,-5,1],C![1,-1,0],C![1,1,0],C![1,5,1],C![1,15,2],C![2,-21,1],C![2,21,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 2 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 - z^3\) \(0.248488\) \(\infty\)
\((-1 : -1 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.341079\) \(\infty\)
\((-1 : -1 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.258830\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : 2 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 - z^3\) \(0.248488\) \(\infty\)
\((-1 : -1 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.341079\) \(\infty\)
\((-1 : -1 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.258830\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : 3 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 5xz^2 - z^3\) \(0.248488\) \(\infty\)
\((-1 : -3 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 - z^3\) \(0.341079\) \(\infty\)
\((-1 : -3 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 - z^3\) \(0.258830\) \(\infty\)

2-torsion field: 6.0.5821632.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.017320 \)
Real period: \( 14.02121 \)
Tamagawa product: \( 3 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.728562 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(4\) \(6\) \(3\) \(1 + 3 T + 3 T^{2}\)
\(1123\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 28 T + 1123 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);