# Properties

 Label 909.a Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

## Genus 2 curves in isogeny class 909.a

Label Equation
909.a.909.1 $$y^2 + (x^3 + x)y = -x^4 + x^2 - x$$
909.a.8181.1 $$y^2 + xy = 3x^5 - 7x^4 + x^3 + 6x^2 - 3x$$

## L-function data

Analytic rank:$$0$$

Prime L-Factor
$$3$$$$( 1 - T )( 1 + T )$$
$$101$$$$( 1 - T )( 1 - 6 T + 101 T^{2} )$$

Good L-factors:
Prime L-Factor
$$2$$$$1 + T + 2 T^{3} + 4 T^{4}$$
$$5$$$$1 + T + 5 T^{3} + 25 T^{4}$$
$$7$$$$( 1 + 7 T^{2} )( 1 + 4 T + 7 T^{2} )$$
$$11$$$$( 1 - 6 T + 11 T^{2} )( 1 + 4 T + 11 T^{2} )$$
$$13$$$$1 - 3 T - 39 T^{3} + 169 T^{4}$$
$$17$$$$1 + T + 12 T^{2} + 17 T^{3} + 289 T^{4}$$
$$19$$$$1 + T + 34 T^{2} + 19 T^{3} + 361 T^{4}$$
$$23$$$$( 1 - 8 T + 23 T^{2} )( 1 + 9 T + 23 T^{2} )$$
$$29$$$$( 1 - 6 T + 29 T^{2} )( 1 + 2 T + 29 T^{2} )$$
$\cdots$$\cdots$

$$\mathrm{ST} =$$ $\mathrm{USp}(4)$
Not of $$\GL_2$$-type over $$\Q$$
All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.