Properties

Label 88149.a.264447.1
Conductor $88149$
Discriminant $-264447$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = x^6 - x^5 + 3x^4 - 3x^3 + 3x^2 - x$ (homogenize, simplify)
$y^2 + z^3y = x^6 - x^5z + 3x^4z^2 - 3x^3z^3 + 3x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = 4x^6 - 4x^5 + 12x^4 - 12x^3 + 12x^2 - 4x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 3, -3, 3, -1, 1]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 3, -3, 3, -1, 1], R![1]);
 
sage: X = HyperellipticCurve(R([1, -4, 12, -12, 12, -4, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(88149\) \(=\) \( 3 \cdot 29383 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-264447\) \(=\) \( - 3^{2} \cdot 29383 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(440\) \(=\)  \( 2^{3} \cdot 5 \cdot 11 \)
\( I_4 \)  \(=\) \(3796\) \(=\)  \( 2^{2} \cdot 13 \cdot 73 \)
\( I_6 \)  \(=\) \(427888\) \(=\)  \( 2^{4} \cdot 47 \cdot 569 \)
\( I_{10} \)  \(=\) \(1057788\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 29383 \)
\( J_2 \)  \(=\) \(220\) \(=\)  \( 2^{2} \cdot 5 \cdot 11 \)
\( J_4 \)  \(=\) \(1384\) \(=\)  \( 2^{3} \cdot 173 \)
\( J_6 \)  \(=\) \(15768\) \(=\)  \( 2^{3} \cdot 3^{3} \cdot 73 \)
\( J_8 \)  \(=\) \(388376\) \(=\)  \( 2^{3} \cdot 43 \cdot 1129 \)
\( J_{10} \)  \(=\) \(264447\) \(=\)  \( 3^{2} \cdot 29383 \)
\( g_1 \)  \(=\) \(515363200000/264447\)
\( g_2 \)  \(=\) \(14736832000/264447\)
\( g_3 \)  \(=\) \(84796800/29383\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 1 : 1)\) \((1 : -2 : 1)\)
\((-1 : 3 : 1)\) \((-1 : -4 : 1)\) \((2 : 7 : 3)\) \((-2 : 13 : 1)\) \((-2 : -14 : 1)\) \((1 : -14 : 5)\)
\((2 : -34 : 3)\) \((1 : -111 : 5)\) \((4 : -209 : 13)\) \((4 : -1988 : 13)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 1 : 1)\) \((1 : -2 : 1)\)
\((-1 : 3 : 1)\) \((-1 : -4 : 1)\) \((2 : 7 : 3)\) \((-2 : 13 : 1)\) \((-2 : -14 : 1)\) \((1 : -14 : 5)\)
\((2 : -34 : 3)\) \((1 : -111 : 5)\) \((4 : -209 : 13)\) \((4 : -1988 : 13)\)
Known points
\((1 : -2 : 0)\) \((1 : 2 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -3 : 1)\) \((1 : 3 : 1)\)
\((-1 : -7 : 1)\) \((-1 : 7 : 1)\) \((-2 : -27 : 1)\) \((-2 : 27 : 1)\) \((2 : -41 : 3)\) \((2 : 41 : 3)\)
\((1 : -97 : 5)\) \((1 : 97 : 5)\) \((4 : -1779 : 13)\) \((4 : 1779 : 13)\)

magma: [C![-2,-14,1],C![-2,13,1],C![-1,-4,1],C![-1,3,1],C![0,-1,1],C![0,0,1],C![1,-111,5],C![1,-14,5],C![1,-2,1],C![1,-1,0],C![1,1,0],C![1,1,1],C![2,-34,3],C![2,7,3],C![4,-1988,13],C![4,-209,13]]; // minimal model
 
magma: [C![-2,-27,1],C![-2,27,1],C![-1,-7,1],C![-1,7,1],C![0,-1,1],C![0,1,1],C![1,-97,5],C![1,97,5],C![1,-3,1],C![1,-2,0],C![1,2,0],C![1,3,1],C![2,-41,3],C![2,41,3],C![4,-1779,13],C![4,1779,13]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2 - z^3\) \(0.519044\) \(\infty\)
\((1 : 1 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3\) \(0.334564\) \(\infty\)
\((0 : -1 : 1) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0.245498\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2 - z^3\) \(0.519044\) \(\infty\)
\((1 : 1 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3\) \(0.334564\) \(\infty\)
\((0 : -1 : 1) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0.245498\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : 3 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(4xz^2 - z^3\) \(0.519044\) \(\infty\)
\((1 : 3 : 1) - (1 : -2 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(2x^3 + z^3\) \(0.334564\) \(\infty\)
\((0 : -1 : 1) + (1 : -3 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - z^3\) \(0.245498\) \(\infty\)

2-torsion field: 6.0.1880512.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.038489 \)
Real period: \( 11.18803 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.861249 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 2 T + 3 T^{2} )\)
\(29383\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 174 T + 29383 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);