Properties

Label 88034.a.176068.1
Conductor $88034$
Discriminant $176068$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = 2x^5 - 10x^4 + 11x^3 - 2x^2 - x$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = 2x^5z - 10x^4z^2 + 11x^3z^3 - 2x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = x^6 + 8x^5 - 40x^4 + 46x^3 - 8x^2 - 4x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, -2, 11, -10, 2]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, -2, 11, -10, 2], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, -4, -8, 46, -40, 8, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(88034\) \(=\) \( 2 \cdot 44017 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(176068\) \(=\) \( 2^{2} \cdot 44017 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(3028\) \(=\)  \( 2^{2} \cdot 757 \)
\( I_4 \)  \(=\) \(146233\) \(=\)  \( 257 \cdot 569 \)
\( I_6 \)  \(=\) \(127602253\) \(=\)  \( 131 \cdot 974063 \)
\( I_{10} \)  \(=\) \(22536704\) \(=\)  \( 2^{9} \cdot 44017 \)
\( J_2 \)  \(=\) \(757\) \(=\)  \( 757 \)
\( J_4 \)  \(=\) \(17784\) \(=\)  \( 2^{3} \cdot 3^{2} \cdot 13 \cdot 19 \)
\( J_6 \)  \(=\) \(513140\) \(=\)  \( 2^{2} \cdot 5 \cdot 25657 \)
\( J_8 \)  \(=\) \(18044081\) \(=\)  \( 11 \cdot 677 \cdot 2423 \)
\( J_{10} \)  \(=\) \(176068\) \(=\)  \( 2^{2} \cdot 44017 \)
\( g_1 \)  \(=\) \(248587563395557/176068\)
\( g_2 \)  \(=\) \(1928666321478/44017\)
\( g_3 \)  \(=\) \(73513590965/44017\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((1 : -2 : 1)\)
\((2 : -3 : 1)\) \((2 : -6 : 1)\) \((1 : -12 : 3)\) \((3 : -12 : 2)\) \((1 : -16 : 3)\) \((3 : -23 : 2)\)
\((1 : -24 : 4)\) \((1 : -36 : 5)\) \((1 : -41 : 4)\) \((1 : -90 : 5)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((1 : -2 : 1)\)
\((2 : -3 : 1)\) \((2 : -6 : 1)\) \((1 : -12 : 3)\) \((3 : -12 : 2)\) \((1 : -16 : 3)\) \((3 : -23 : 2)\)
\((1 : -24 : 4)\) \((1 : -36 : 5)\) \((1 : -41 : 4)\) \((1 : -90 : 5)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -2 : 1)\) \((1 : 2 : 1)\)
\((2 : -3 : 1)\) \((2 : 3 : 1)\) \((1 : -4 : 3)\) \((1 : 4 : 3)\) \((3 : -11 : 2)\) \((3 : 11 : 2)\)
\((1 : -17 : 4)\) \((1 : 17 : 4)\) \((1 : -54 : 5)\) \((1 : 54 : 5)\)

magma: [C![0,-1,1],C![0,0,1],C![1,-90,5],C![1,-41,4],C![1,-36,5],C![1,-24,4],C![1,-16,3],C![1,-12,3],C![1,-2,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![2,-6,1],C![2,-3,1],C![3,-23,2],C![3,-12,2]]; // minimal model
 
magma: [C![0,-1,1],C![0,1,1],C![1,-54,5],C![1,-17,4],C![1,54,5],C![1,17,4],C![1,-4,3],C![1,4,3],C![1,-2,1],C![1,-1,0],C![1,1,0],C![1,2,1],C![2,-3,1],C![2,3,1],C![3,-11,2],C![3,11,2]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -16 : 3) - (1 : 0 : 0)\) \(z (3x - z)\) \(=\) \(0,\) \(9y\) \(=\) \(-9x^3 - 5z^3\) \(0.703530\) \(\infty\)
\(2 \cdot(1 : -2 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z)^2\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2\) \(0.585526\) \(\infty\)
\((0 : 0 : 1) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2\) \(0.057772\) \(\infty\)
Generator $D_0$ Height Order
\((1 : -16 : 3) - (1 : 0 : 0)\) \(z (3x - z)\) \(=\) \(0,\) \(9y\) \(=\) \(-9x^3 - 5z^3\) \(0.703530\) \(\infty\)
\(2 \cdot(1 : -2 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z)^2\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2\) \(0.585526\) \(\infty\)
\((0 : 0 : 1) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2\) \(0.057772\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(z (3x - z)\) \(=\) \(0,\) \(9y\) \(=\) \(-17x^3 - 9z^3\) \(0.703530\) \(\infty\)
\(2 \cdot(1 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z)^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 4xz^2 + z^3\) \(0.585526\) \(\infty\)
\((0 : 1 : 1) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 4xz^2 + z^3\) \(0.057772\) \(\infty\)

2-torsion field: 6.2.2817088.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.023187 \)
Real period: \( 19.36559 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.898085 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + T + 2 T^{2} )\)
\(44017\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 118 T + 44017 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);