Properties

Label 8788.a
Conductor $8788$
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more

Genus 2 curves in isogeny class 8788.a

Label Equation
8788.a.17576.1 \(y^2 + (x^3 + x^2 + x)y = -x^4 - 3x^2 + 3x - 1\)

L-function data

Analytic rank:\(1\)
Mordell-Weil rank:\(1\)
 
Bad L-factors:
Prime L-Factor
\(2\)\( ( 1 - T )( 1 + T )\)
\(13\)\( 1 - T\)
 
Good L-factors:
Prime L-Factor
\(3\)\( ( 1 - T + 3 T^{2} )( 1 + T + 3 T^{2} )\)
\(5\)\( ( 1 + 3 T + 5 T^{2} )^{2}\)
\(7\)\( ( 1 + T + 7 T^{2} )( 1 + 3 T + 7 T^{2} )\)
\(11\)\( ( 1 - 6 T + 11 T^{2} )( 1 + 11 T^{2} )\)
\(17\)\( ( 1 + 3 T + 17 T^{2} )^{2}\)
\(19\)\( ( 1 - 2 T + 19 T^{2} )( 1 + 6 T + 19 T^{2} )\)
\(23\)\( ( 1 - 6 T + 23 T^{2} )( 1 + 23 T^{2} )\)
\(29\)\( ( 1 - 6 T + 29 T^{2} )( 1 + 29 T^{2} )\)
$\cdots$$\cdots$
 
See L-function page for more information

Sato-Tate group

\(\mathrm{ST} =\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 338.d
  Elliptic curve isogeny class 26.a

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism algebra over \(\Q\):

\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.