Properties

Label 869526.a.869526.1
Conductor $869526$
Discriminant $869526$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = 10x^5 + 98x^4 + 64x^3 - 233x^2 + 133x - 23$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = 10x^5z + 98x^4z^2 + 64x^3z^3 - 233x^2z^4 + 133xz^5 - 23z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 40x^5 + 392x^4 + 258x^3 - 932x^2 + 532x - 91$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-23, 133, -233, 64, 98, 10]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-23, 133, -233, 64, 98, 10], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-91, 532, -932, 258, 392, 40, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(869526\) \(=\) \( 2 \cdot 3^{2} \cdot 7 \cdot 67 \cdot 103 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(869526\) \(=\) \( 2 \cdot 3^{2} \cdot 7 \cdot 67 \cdot 103 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(3558964\) \(=\)  \( 2^{2} \cdot 41 \cdot 21701 \)
\( I_4 \)  \(=\) \(140093089\) \(=\)  \( 1093 \cdot 128173 \)
\( I_6 \)  \(=\) \(165658364763297\) \(=\)  \( 3 \cdot 7^{5} \cdot 1601 \cdot 2052157 \)
\( I_{10} \)  \(=\) \(111299328\) \(=\)  \( 2^{8} \cdot 3^{2} \cdot 7 \cdot 67 \cdot 103 \)
\( J_2 \)  \(=\) \(889741\) \(=\)  \( 41 \cdot 21701 \)
\( J_4 \)  \(=\) \(32979123083\) \(=\)  \( 103 \cdot 397 \cdot 806513 \)
\( J_6 \)  \(=\) \(1629590277837537\) \(=\)  \( 3^{2} \cdot 97 \cdot 349 \cdot 5348583181 \)
\( J_8 \)  \(=\) \(90572681017446145757\) \(=\)  \( 17 \cdot 1823 \cdot 9386017 \cdot 311372531 \)
\( J_{10} \)  \(=\) \(869526\) \(=\)  \( 2 \cdot 3^{2} \cdot 7 \cdot 67 \cdot 103 \)
\( g_1 \)  \(=\) \(557593905641705625555032564701/869526\)
\( g_2 \)  \(=\) \(225523960579970866544154881/8442\)
\( g_3 \)  \(=\) \(143338588297752202668008833/96614\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -4 : 2),\, (1 : -5 : 2),\, (29 : -120189 : 60),\, (29 : -120200 : 60)\)
Known points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -4 : 2),\, (1 : -5 : 2),\, (29 : -120189 : 60),\, (29 : -120200 : 60)\)
Known points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (1 : -1 : 2),\, (1 : 1 : 2),\, (29 : -11 : 60),\, (29 : 11 : 60)\)

magma: [C![1,-5,2],C![1,-4,2],C![1,-1,0],C![1,0,0],C![29,-120200,60],C![29,-120189,60]]; // minimal model
 
magma: [C![1,-1,2],C![1,1,2],C![1,-1,0],C![1,1,0],C![29,-11,60],C![29,11,60]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(2 \cdot(1 : -5 : 2) - (1 : -1 : 0) - (1 : 0 : 0)\) \((2x - z)^2\) \(=\) \(0,\) \(4y\) \(=\) \(-19xz^2 + 7z^3\) \(1.419727\) \(\infty\)
\((1 : -5 : 2) - (1 : 0 : 0)\) \(z (2x - z)\) \(=\) \(0,\) \(2y\) \(=\) \(-2x^3 - z^3\) \(0.407525\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + 14xz - 7z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-203xz^2 + 97z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(2 \cdot(1 : -5 : 2) - (1 : -1 : 0) - (1 : 0 : 0)\) \((2x - z)^2\) \(=\) \(0,\) \(4y\) \(=\) \(-19xz^2 + 7z^3\) \(1.419727\) \(\infty\)
\((1 : -5 : 2) - (1 : 0 : 0)\) \(z (2x - z)\) \(=\) \(0,\) \(2y\) \(=\) \(-2x^3 - z^3\) \(0.407525\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + 14xz - 7z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-203xz^2 + 97z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \((2x - z)^2\) \(=\) \(0,\) \(4y\) \(=\) \(x^3 - 38xz^2 + 15z^3\) \(1.419727\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(z (2x - z)\) \(=\) \(0,\) \(2y\) \(=\) \(-3x^3 - z^3\) \(0.407525\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 + 14xz - 7z^2\) \(=\) \(0,\) \(2y\) \(=\) \(x^3 - 406xz^2 + 195z^3\) \(0\) \(2\)

2-torsion field: 6.6.75271512927744.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(5\)
Regulator: \( 0.572703 \)
Real period: \( 7.996054 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 4.579372 \)
Analytic order of Ш: \( 4 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + T + 2 T^{2} )\)
\(3\) \(2\) \(2\) \(1\) \(1 + T^{2}\)
\(7\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 2 T + 7 T^{2} )\)
\(67\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 4 T + 67 T^{2} )\)
\(103\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 8 T + 103 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.15.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);