Properties

Label 864.a.221184.1
Conductor 864
Discriminant -221184
Mordell-Weil group \(\Z/{12}\Z\)
Sato-Tate group $N(G_{1,3})$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\C \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{CM} \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + x^3y = x^5 - 4x^4 - 6x^3 + 33x^2 - 36x + 12$ (homogenize, simplify)
$y^2 + x^3y = x^5z - 4x^4z^2 - 6x^3z^3 + 33x^2z^4 - 36xz^5 + 12z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 4x^5 - 16x^4 - 24x^3 + 132x^2 - 144x + 48$ (minimize, homogenize)

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![12, -36, 33, -6, -4, 1], R![0, 0, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([12, -36, 33, -6, -4, 1]), R([0, 0, 0, 1]));
 
magma: X,pi:= SimplifiedModel(C);
 
sage: X = HyperellipticCurve(R([48, -144, 132, -24, -16, 4, 1]))
 

Invariants

Conductor: \( N \)  =  \(864\) = \( 2^{5} \cdot 3^{3} \)
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(864,2),R![1]>*])); Factorization($1);
 
Discriminant: \( \Delta \)  =  \(-221184\) = \( - 2^{13} \cdot 3^{3} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  = \(2688\) =  \( 2^{7} \cdot 3 \cdot 7 \)
\( I_4 \)  = \(8847360\) =  \( 2^{16} \cdot 3^{3} \cdot 5 \)
\( I_6 \)  = \(-866009088\) =  \( - 2^{14} \cdot 3^{2} \cdot 7 \cdot 839 \)
\( I_{10} \)  = \(-905969664\) =  \( - 2^{25} \cdot 3^{3} \)
\( J_2 \)  = \(336\) =  \( 2^{4} \cdot 3 \cdot 7 \)
\( J_4 \)  = \(-87456\) =  \( - 2^{5} \cdot 3 \cdot 911 \)
\( J_6 \)  = \(10192896\) =  \( 2^{11} \cdot 3^{2} \cdot 7 \cdot 79 \)
\( J_8 \)  = \(-1055934720\) =  \( - 2^{8} \cdot 3^{2} \cdot 5 \cdot 71 \cdot 1291 \)
\( J_{10} \)  = \(-221184\) =  \( - 2^{13} \cdot 3^{3} \)
\( g_1 \)  = \(-19361664\)
\( g_2 \)  = \(14998704\)
\( g_3 \)  = \(-5202624\)

magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : 0 : 1),\, (1 : -1 : 1)\)

magma: [C![1,-1,0],C![1,-1,1],C![1,0,0],C![1,0,1]];
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian:

Group structure: \(\Z/{12}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(2 \cdot(1 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z)^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 - z^3\) \(0\) \(12\)

2-torsion field: 8.0.47775744.4

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 18.14296 \)
Tamagawa product: \( 3 \)
Torsion order:\( 12 \)
Leading coefficient: \( 0.377978 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor
\(2\) \(13\) \(5\) \(3\) \(1\)
\(3\) \(3\) \(3\) \(1\) \(1 + T\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $N(G_{1,3})$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{U}(1)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curves:
  Elliptic curve 36.a2
  Elliptic curve 24.a2

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{-3}) \) with defining polynomial \(x^{2} - x + 1\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an order of index \(8\) in \(\Z \times \Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q(\sqrt{-3}) \)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\R \times \C\)