Properties

Label 85403.a.85403.1
Conductor $85403$
Discriminant $-85403$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = x^6 - x^5 + 2x^3 - x^2 - x$ (homogenize, simplify)
$y^2 + z^3y = x^6 - x^5z + 2x^3z^3 - x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = 4x^6 - 4x^5 + 8x^3 - 4x^2 - 4x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, -1, 2, 0, -1, 1]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, -1, 2, 0, -1, 1], R![1]);
 
sage: X = HyperellipticCurve(R([1, -4, -4, 8, 0, -4, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(85403\) \(=\) \( 41 \cdot 2083 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-85403\) \(=\) \( - 41 \cdot 2083 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(16\) \(=\)  \( 2^{4} \)
\( I_4 \)  \(=\) \(-1676\) \(=\)  \( - 2^{2} \cdot 419 \)
\( I_6 \)  \(=\) \(-416552\) \(=\)  \( - 2^{3} \cdot 52069 \)
\( I_{10} \)  \(=\) \(-341612\) \(=\)  \( - 2^{2} \cdot 41 \cdot 2083 \)
\( J_2 \)  \(=\) \(8\) \(=\)  \( 2^{3} \)
\( J_4 \)  \(=\) \(282\) \(=\)  \( 2 \cdot 3 \cdot 47 \)
\( J_6 \)  \(=\) \(45664\) \(=\)  \( 2^{5} \cdot 1427 \)
\( J_8 \)  \(=\) \(71447\) \(=\)  \( 37 \cdot 1931 \)
\( J_{10} \)  \(=\) \(-85403\) \(=\)  \( - 41 \cdot 2083 \)
\( g_1 \)  \(=\) \(-32768/85403\)
\( g_2 \)  \(=\) \(-144384/85403\)
\( g_3 \)  \(=\) \(-2922496/85403\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\)
\((-1 : -1 : 1)\) \((1 : -1 : 1)\) \((-2 : -5 : 3)\) \((2 : 6 : 1)\) \((2 : -7 : 1)\) \((-1 : 16 : 5)\)
\((-2 : -22 : 3)\) \((-5 : -57 : 8)\) \((-1 : -141 : 5)\) \((2 : -377 : 11)\) \((-5 : -455 : 8)\) \((2 : -954 : 11)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\)
\((-1 : -1 : 1)\) \((1 : -1 : 1)\) \((-2 : -5 : 3)\) \((2 : 6 : 1)\) \((2 : -7 : 1)\) \((-1 : 16 : 5)\)
\((-2 : -22 : 3)\) \((-5 : -57 : 8)\) \((-1 : -141 : 5)\) \((2 : -377 : 11)\) \((-5 : -455 : 8)\) \((2 : -954 : 11)\)
Known points
\((1 : -2 : 0)\) \((1 : 2 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((1 : 1 : 1)\) \((2 : -13 : 1)\) \((2 : 13 : 1)\) \((-2 : -17 : 3)\) \((-2 : 17 : 3)\)
\((-1 : -157 : 5)\) \((-1 : 157 : 5)\) \((-5 : -398 : 8)\) \((-5 : 398 : 8)\) \((2 : -577 : 11)\) \((2 : 577 : 11)\)

magma: [C![-5,-455,8],C![-5,-57,8],C![-2,-22,3],C![-2,-5,3],C![-1,-141,5],C![-1,-1,1],C![-1,0,1],C![-1,16,5],C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,-1,1],C![1,0,1],C![1,1,0],C![2,-954,11],C![2,-377,11],C![2,-7,1],C![2,6,1]]; // minimal model
 
magma: [C![-5,-398,8],C![-5,398,8],C![-2,-17,3],C![-2,17,3],C![-1,-157,5],C![-1,-1,1],C![-1,1,1],C![-1,157,5],C![0,-1,1],C![0,1,1],C![1,-2,0],C![1,-1,1],C![1,1,1],C![1,2,0],C![2,-577,11],C![2,577,11],C![2,-13,1],C![2,13,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : -1 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3\) \(0.516673\) \(\infty\)
\((-1 : 0 : 1) + (1 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.328783\) \(\infty\)
\((-1 : 0 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0.329904\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3\) \(0.516673\) \(\infty\)
\((-1 : 0 : 1) + (1 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.328783\) \(\infty\)
\((-1 : 0 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0.329904\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) - (1 : -2 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(2x^3 + z^3\) \(0.516673\) \(\infty\)
\((-1 : 1 : 1) + (1 : 1 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(z^3\) \(0.328783\) \(\infty\)
\((-1 : 1 : 1) + (0 : -1 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - z^3\) \(0.329904\) \(\infty\)

2-torsion field: 6.4.5465792.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.049862 \)
Real period: \( 16.94122 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.844730 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(41\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 6 T + 41 T^{2} )\)
\(2083\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 68 T + 2083 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);