Minimal equation
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2, 4, 5, 3], R![0, 0, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2, 4, 5, 3]), R([0, 0, 0, 1]))
$y^2 + x^3y = 3x^3 + 5x^2 + 4x + 2$
Invariants
| \( N \) | = | \( 835904 \) | = | \( 2^{6} \cdot 37 \cdot 353 \) | magma: Conductor(LSeries(C)); Factorization($1);
|
| \( \Delta \) | = | \(835904\) | = | \( 2^{6} \cdot 37 \cdot 353 \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
Igusa invariants
magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
G2 invariants
magma: G2Invariants(C);
| \( I_2 \) | = | \(-1056\) | = | \( -1 \cdot 2^{5} \cdot 3 \cdot 11 \) |
| \( I_4 \) | = | \(169728\) | = | \( 2^{8} \cdot 3 \cdot 13 \cdot 17 \) |
| \( I_6 \) | = | \(-61145088\) | = | \( -1 \cdot 2^{16} \cdot 3 \cdot 311 \) |
| \( I_{10} \) | = | \(3423862784\) | = | \( 2^{18} \cdot 37 \cdot 353 \) |
| \( J_2 \) | = | \(-132\) | = | \( -1 \cdot 2^{2} \cdot 3 \cdot 11 \) |
| \( J_4 \) | = | \(-1042\) | = | \( -1 \cdot 2 \cdot 521 \) |
| \( J_6 \) | = | \(36004\) | = | \( 2^{2} \cdot 9001 \) |
| \( J_8 \) | = | \(-1459573\) | = | \( -1 \cdot 31 \cdot 197 \cdot 239 \) |
| \( J_{10} \) | = | \(835904\) | = | \( 2^{6} \cdot 37 \cdot 353 \) |
| \( g_1 \) | = | \(-626166288/13061\) | ||
| \( g_2 \) | = | \(37446354/13061\) | ||
| \( g_3 \) | = | \(9802089/13061\) |
Automorphism group
|
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
||||
| \(\mathrm{Aut}(X)\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) | |
|
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
||||
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) | |
Rational points
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
This curve is locally solvable everywhere.
magma: [C![-1,-7,2],C![-1,0,1],C![-1,1,1],C![-1,8,2],C![1,-1,0],C![1,0,0]];
Known rational points: (-1 : -7 : 2), (-1 : 0 : 1), (-1 : 1 : 1), (-1 : 8 : 2), (1 : -1 : 0), (1 : 0 : 0)
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
Number of rational Weierstrass points: \(0\)
Invariants of the Jacobian:
Analytic rank*: \(2\)
magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
2-Selmer rank: \(2\)
magma: HasSquareSha(Jacobian(C));
Order of Ш*: square
Regulator: 0.179044900722
Real period: 14.031658099626100561531417887
Tamagawa numbers: 1 (p = 2), 1 (p = 37), 1 (p = 353)
magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
Torsion: \(\mathrm{trivial}\)
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition
Simple over \(\overline{\Q}\)
Endomorphisms
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).