Properties

Label 835904.a.835904.1
Conductor 835904
Discriminant 835904
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2, 4, 5, 3], R![0, 0, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2, 4, 5, 3]), R([0, 0, 0, 1]))
 

$y^2 + x^3y = 3x^3 + 5x^2 + 4x + 2$

Invariants

\( N \)  =  \( 835904 \)  =  \( 2^{6} \cdot 37 \cdot 353 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
\( \Delta \)  =  \(835904\)  =  \( 2^{6} \cdot 37 \cdot 353 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
 

G2 invariants

magma: G2Invariants(C);
 

\( I_2 \)  =  \(-1056\)  =  \( -1 \cdot 2^{5} \cdot 3 \cdot 11 \)
\( I_4 \)  =  \(169728\)  =  \( 2^{8} \cdot 3 \cdot 13 \cdot 17 \)
\( I_6 \)  =  \(-61145088\)  =  \( -1 \cdot 2^{16} \cdot 3 \cdot 311 \)
\( I_{10} \)  =  \(3423862784\)  =  \( 2^{18} \cdot 37 \cdot 353 \)
\( J_2 \)  =  \(-132\)  =  \( -1 \cdot 2^{2} \cdot 3 \cdot 11 \)
\( J_4 \)  =  \(-1042\)  =  \( -1 \cdot 2 \cdot 521 \)
\( J_6 \)  =  \(36004\)  =  \( 2^{2} \cdot 9001 \)
\( J_8 \)  =  \(-1459573\)  =  \( -1 \cdot 31 \cdot 197 \cdot 239 \)
\( J_{10} \)  =  \(835904\)  =  \( 2^{6} \cdot 37 \cdot 353 \)
\( g_1 \)  =  \(-626166288/13061\)
\( g_2 \)  =  \(37446354/13061\)
\( g_3 \)  =  \(9802089/13061\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

This curve is locally solvable everywhere.

magma: [C![-1,-7,2],C![-1,0,1],C![-1,1,1],C![-1,8,2],C![1,-1,0],C![1,0,0]];
 

Known rational points: (-1 : -7 : 2), (-1 : 0 : 1), (-1 : 1 : 1), (-1 : 8 : 2), (1 : -1 : 0), (1 : 0 : 0)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

Number of rational Weierstrass points: \(0\)

Invariants of the Jacobian:

Analytic rank*: \(2\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
 

2-Selmer rank: \(2\)

magma: HasSquareSha(Jacobian(C));
 

Order of Ш*: square

Regulator: 0.179044900722

Real period: 14.031658099626100561531417887

Tamagawa numbers: 1 (p = 2), 1 (p = 37), 1 (p = 353)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
 

Torsion: \(\mathrm{trivial}\)

2-torsion field: 6.2.835904.1

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).