Properties

Label 83422.a.166844.1
Conductor $83422$
Discriminant $166844$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -x^5 + x^4 + x^2 - 7x + 6$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -x^5z + x^4z^2 + x^2z^4 - 7xz^5 + 6z^6$ (dehomogenize, simplify)
$y^2 = x^6 - 4x^5 + 4x^4 + 2x^3 + 4x^2 - 28x + 25$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([6, -7, 1, 0, 1, -1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![6, -7, 1, 0, 1, -1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([25, -28, 4, 2, 4, -4, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(83422\) \(=\) \( 2 \cdot 53 \cdot 787 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(166844\) \(=\) \( 2^{2} \cdot 53 \cdot 787 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(876\) \(=\)  \( 2^{2} \cdot 3 \cdot 73 \)
\( I_4 \)  \(=\) \(12345\) \(=\)  \( 3 \cdot 5 \cdot 823 \)
\( I_6 \)  \(=\) \(4168563\) \(=\)  \( 3 \cdot 7 \cdot 198503 \)
\( I_{10} \)  \(=\) \(-21356032\) \(=\)  \( - 2^{9} \cdot 53 \cdot 787 \)
\( J_2 \)  \(=\) \(219\) \(=\)  \( 3 \cdot 73 \)
\( J_4 \)  \(=\) \(1484\) \(=\)  \( 2^{2} \cdot 7 \cdot 53 \)
\( J_6 \)  \(=\) \(-2292\) \(=\)  \( - 2^{2} \cdot 3 \cdot 191 \)
\( J_8 \)  \(=\) \(-676051\) \(=\)  \( -676051 \)
\( J_{10} \)  \(=\) \(-166844\) \(=\)  \( - 2^{2} \cdot 53 \cdot 787 \)
\( g_1 \)  \(=\) \(-503756397099/166844\)
\( g_2 \)  \(=\) \(-73524213/787\)
\( g_3 \)  \(=\) \(27481653/41711\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((1 : 0 : 1)\) \((0 : 2 : 1)\) \((1 : -2 : 1)\) \((0 : -3 : 1)\)
\((-1 : -4 : 1)\) \((-1 : 4 : 1)\) \((2 : -4 : 1)\) \((2 : -5 : 1)\) \((-3 : -10 : 1)\) \((3 : -17 : 2)\)
\((3 : -18 : 2)\) \((-3 : 36 : 1)\) \((7 : -142 : 3)\) \((8 : -185 : 3)\) \((7 : -228 : 3)\) \((8 : -354 : 3)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((1 : 0 : 1)\) \((0 : 2 : 1)\) \((1 : -2 : 1)\) \((0 : -3 : 1)\)
\((-1 : -4 : 1)\) \((-1 : 4 : 1)\) \((2 : -4 : 1)\) \((2 : -5 : 1)\) \((-3 : -10 : 1)\) \((3 : -17 : 2)\)
\((3 : -18 : 2)\) \((-3 : 36 : 1)\) \((7 : -142 : 3)\) \((8 : -185 : 3)\) \((7 : -228 : 3)\) \((8 : -354 : 3)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((1 : -2 : 1)\) \((1 : 2 : 1)\) \((2 : -1 : 1)\) \((2 : 1 : 1)\)
\((3 : -1 : 2)\) \((3 : 1 : 2)\) \((0 : -5 : 1)\) \((0 : 5 : 1)\) \((-1 : -8 : 1)\) \((-1 : 8 : 1)\)
\((-3 : -46 : 1)\) \((-3 : 46 : 1)\) \((7 : -86 : 3)\) \((7 : 86 : 3)\) \((8 : -169 : 3)\) \((8 : 169 : 3)\)

magma: [C![-3,-10,1],C![-3,36,1],C![-1,-4,1],C![-1,4,1],C![0,-3,1],C![0,2,1],C![1,-2,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![2,-5,1],C![2,-4,1],C![3,-18,2],C![3,-17,2],C![7,-228,3],C![7,-142,3],C![8,-354,3],C![8,-185,3]]; // minimal model
 
magma: [C![-3,-46,1],C![-3,46,1],C![-1,-8,1],C![-1,8,1],C![0,-5,1],C![0,5,1],C![1,-2,1],C![1,-1,0],C![1,1,0],C![1,2,1],C![2,-1,1],C![2,1,1],C![3,-1,2],C![3,1,2],C![7,-86,3],C![7,86,3],C![8,-169,3],C![8,169,3]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : 0 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + z^3\) \(0.363641\) \(\infty\)
\((2 : -5 : 1) - (1 : 0 : 0)\) \(z (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + 3z^3\) \(0.323642\) \(\infty\)
\((1 : -2 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.235621\) \(\infty\)
Generator $D_0$ Height Order
\((1 : 0 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + z^3\) \(0.363641\) \(\infty\)
\((2 : -5 : 1) - (1 : 0 : 0)\) \(z (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + 3z^3\) \(0.323642\) \(\infty\)
\((1 : -2 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.235621\) \(\infty\)
Generator $D_0$ Height Order
\((1 : 2 : 1) - (1 : 1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + 3z^3\) \(0.363641\) \(\infty\)
\((2 : -1 : 1) - (1 : 1 : 0)\) \(z (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + 7z^3\) \(0.323642\) \(\infty\)
\((1 : -2 : 1) - (1 : 1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.235621\) \(\infty\)

2-torsion field: 6.2.667376.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.025288 \)
Real period: \( 16.09825 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.814204 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + T + 2 T^{2} )\)
\(53\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + T + 53 T^{2} )\)
\(787\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 43 T + 787 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);