Properties

Label 792079.a.792079.1
Conductor $792079$
Discriminant $-792079$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = -3x^5 + 7x^4 - 4x^2$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = -3x^5z + 7x^4z^2 - 4x^2z^4$ (dehomogenize, simplify)
$y^2 = x^6 - 12x^5 + 30x^4 + 2x^3 - 15x^2 + 2x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -4, 0, 7, -3]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -4, 0, 7, -3], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 2, -15, 2, 30, -12, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(792079\) \(=\) \( 41 \cdot 19319 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-792079\) \(=\) \( - 41 \cdot 19319 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(3012\) \(=\)  \( 2^{2} \cdot 3 \cdot 251 \)
\( I_4 \)  \(=\) \(432585\) \(=\)  \( 3^{2} \cdot 5 \cdot 9613 \)
\( I_6 \)  \(=\) \(340579413\) \(=\)  \( 3^{2} \cdot 37 \cdot 1022761 \)
\( I_{10} \)  \(=\) \(-101386112\) \(=\)  \( - 2^{7} \cdot 41 \cdot 19319 \)
\( J_2 \)  \(=\) \(753\) \(=\)  \( 3 \cdot 251 \)
\( J_4 \)  \(=\) \(5601\) \(=\)  \( 3 \cdot 1867 \)
\( J_6 \)  \(=\) \(28157\) \(=\)  \( 37 \cdot 761 \)
\( J_8 \)  \(=\) \(-2542245\) \(=\)  \( - 3 \cdot 5 \cdot 169483 \)
\( J_{10} \)  \(=\) \(-792079\) \(=\)  \( - 41 \cdot 19319 \)
\( g_1 \)  \(=\) \(-242088902178993/792079\)
\( g_2 \)  \(=\) \(-2391390508977/792079\)
\( g_3 \)  \(=\) \(-15965272413/792079\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((2 : 0 : 1)\)
\((-1 : -2 : 1)\) \((-2 : 0 : 3)\) \((-1 : 3 : 1)\) \((1 : -3 : 1)\) \((-2 : -1 : 3)\) \((1 : -6 : 2)\)
\((1 : -7 : 2)\) \((3 : -9 : 1)\) \((1 : -10 : 3)\) \((2 : -11 : 1)\) \((3 : -22 : 1)\) \((1 : -27 : 3)\)
\((-1 : -39 : 8)\) \((-1 : -408 : 8)\) \((4 : -819 : 15)\) \((4 : -3520 : 15)\) \((13 : -4732 : 20)\) \((-15 : -6579 : 14)\)
\((-15 : 10150 : 14)\) \((13 : -10665 : 20)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((2 : 0 : 1)\)
\((-1 : -2 : 1)\) \((-2 : 0 : 3)\) \((-1 : 3 : 1)\) \((1 : -3 : 1)\) \((-2 : -1 : 3)\) \((1 : -6 : 2)\)
\((1 : -7 : 2)\) \((3 : -9 : 1)\) \((1 : -10 : 3)\) \((2 : -11 : 1)\) \((3 : -22 : 1)\) \((1 : -27 : 3)\)
\((-1 : -39 : 8)\) \((-1 : -408 : 8)\) \((4 : -819 : 15)\) \((4 : -3520 : 15)\) \((13 : -4732 : 20)\) \((-15 : -6579 : 14)\)
\((-15 : 10150 : 14)\) \((13 : -10665 : 20)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -1 : 2)\) \((1 : 1 : 2)\)
\((1 : -3 : 1)\) \((1 : 3 : 1)\) \((-2 : -1 : 3)\) \((-2 : 1 : 3)\) \((-1 : -5 : 1)\) \((-1 : 5 : 1)\)
\((2 : -11 : 1)\) \((2 : 11 : 1)\) \((3 : -13 : 1)\) \((3 : 13 : 1)\) \((1 : -17 : 3)\) \((1 : 17 : 3)\)
\((-1 : -369 : 8)\) \((-1 : 369 : 8)\) \((4 : -2701 : 15)\) \((4 : 2701 : 15)\) \((13 : -5933 : 20)\) \((13 : 5933 : 20)\)
\((-15 : -16729 : 14)\) \((-15 : 16729 : 14)\)

magma: [C![-15,-6579,14],C![-15,10150,14],C![-2,-1,3],C![-2,0,3],C![-1,-408,8],C![-1,-39,8],C![-1,-2,1],C![-1,3,1],C![0,-1,1],C![0,0,1],C![1,-27,3],C![1,-10,3],C![1,-7,2],C![1,-6,2],C![1,-3,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![2,-11,1],C![2,0,1],C![3,-22,1],C![3,-9,1],C![4,-3520,15],C![4,-819,15],C![13,-10665,20],C![13,-4732,20]]; // minimal model
 
magma: [C![-15,-16729,14],C![-15,16729,14],C![-2,-1,3],C![-2,1,3],C![-1,-369,8],C![-1,369,8],C![-1,-5,1],C![-1,5,1],C![0,-1,1],C![0,1,1],C![1,-17,3],C![1,17,3],C![1,-1,2],C![1,1,2],C![1,-3,1],C![1,-1,0],C![1,1,0],C![1,3,1],C![2,-11,1],C![2,11,1],C![3,-13,1],C![3,13,1],C![4,-2701,15],C![4,2701,15],C![13,-5933,20],C![13,5933,20]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : -2 : 1) + (1 : -7 : 2) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x + z) (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(3xz^2 - 5z^3\) \(1.058260\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.382303\) \(\infty\)
\((1 : -3 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-3z^3\) \(0.767136\) \(\infty\)
\((1 : -7 : 2) - (1 : 0 : 0)\) \(z (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(-4x^3 - 3z^3\) \(0.404632\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -2 : 1) + (1 : -7 : 2) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x + z) (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(3xz^2 - 5z^3\) \(1.058260\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.382303\) \(\infty\)
\((1 : -3 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-3z^3\) \(0.767136\) \(\infty\)
\((1 : -7 : 2) - (1 : 0 : 0)\) \(z (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(-4x^3 - 3z^3\) \(0.404632\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \((x + z) (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(x^3 + 7xz^2 - 9z^3\) \(1.058260\) \(\infty\)
\((0 : -1 : 1) - (1 : 1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + xz^2 - z^3\) \(0.382303\) \(\infty\)
\((1 : -3 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 - 5z^3\) \(0.767136\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(z (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(-7x^3 + xz^2 - 5z^3\) \(0.404632\) \(\infty\)

2-torsion field: 6.4.50693056.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(4\)   (upper bound)
Mordell-Weil rank: \(4\)
2-Selmer rank:\(4\)
Regulator: \( 0.084450 \)
Real period: \( 18.00416 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.520457 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(41\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 4 T + 41 T^{2} )\)
\(19319\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 40 T + 19319 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);