Label |
Class |
Conductor |
Discriminant |
Rank* |
2-Selmer rank |
Torsion |
$\textrm{End}^0(J_{\overline\Q})$ |
$\textrm{End}^0(J)$ |
$\GL_2\textsf{-type}$ |
Sato-Tate |
Nonmaximal primes |
$\Q$-simple |
\(\overline{\Q}\)-simple |
\(\Aut(X)\) |
\(\Aut(X_{\overline{\Q}})\) |
$\Q$-points |
$\Q$-Weierstrass points |
mod-$\ell$ images |
Locally solvable |
Square Ш* |
Analytic Ш* |
Tamagawa |
Regulator |
Real period |
Leading coefficient |
Igusa-Clebsch invariants |
Igusa invariants |
G2-invariants |
Equation |
784.a.1568.1 |
784.a |
\( 2^{4} \cdot 7^{2} \) |
\( 2^{5} \cdot 7^{2} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.90.3, 3.2160.21 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(20.793351\) |
\(0.288797\) |
$[792,120,15228,6272]$ |
$[396,6514,144256,3673295,1568]$ |
$[\frac{304316815968}{49},\frac{12641055372}{49},14427072]$ |
$y^2 + (x^3 + x)y = -2x^4 + 3x^2 - 2$ |
784.a.43904.1 |
784.a |
\( 2^{4} \cdot 7^{2} \) |
\( - 2^{7} \cdot 7^{3} \) |
$0$ |
$1$ |
$\Z/12\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$2$ |
$0$ |
2.90.1, 3.2160.20 |
✓ |
✓ |
$1$ |
\( 2 \cdot 3 \) |
\(1.000000\) |
\(6.931117\) |
\(0.288797\) |
$[21288,3000,20891172,175616]$ |
$[10644,4720114,2790613504,1855953490895,43904]$ |
$[\frac{1067368445729034408}{343},\frac{6352710665144931}{49},\frac{50408453477952}{7}]$ |
$y^2 + (x^3 + x)y = 4x^4 + 27x^2 + 56$ |
784.b.12544.1 |
784.b |
\( 2^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 7^{2} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$2$ |
2.360.1, 3.720.4 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(11.270100\) |
\(0.313058\) |
$[116,445,16259,1568]$ |
$[116,264,-1280,-54544,12544]$ |
$[\frac{82044596}{49},\frac{1609674}{49},-\frac{67280}{49}]$ |
$y^2 + (x^3 + x)y = -1$ |
784.b.25088.1 |
784.b |
\( 2^{4} \cdot 7^{2} \) |
\( - 2^{9} \cdot 7^{2} \) |
$0$ |
$2$ |
$\Z/2\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2$ |
$C_2$ |
$0$ |
$0$ |
2.45.1, 3.720.5 |
|
|
$2$ |
\( 1 \) |
\(1.000000\) |
\(0.626117\) |
\(0.313058\) |
$[2740,15382525,36170522453,3136]$ |
$[2740,-9942200,-24298750736,-41356479464160,25088]$ |
$[\frac{301635777856250}{49},-\frac{399451653071875}{49},-\frac{712598832131225}{98}]$ |
$y^2 + (x^2 + 1)y = -x^6 - 3x^5 + 7x^4 + 2x^3 - 49x^2 + 41x - 9$ |
784.b.76832.1 |
784.b |
\( 2^{4} \cdot 7^{2} \) |
\( - 2^{5} \cdot 7^{4} \) |
$0$ |
$1$ |
$\Z/6\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2$ |
$C_2$ |
$0$ |
$0$ |
2.45.1, 3.2160.20 |
|
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(3.756700\) |
\(0.313058\) |
$[1520,132280,50979316,307328]$ |
$[760,2020,6076,134340,76832]$ |
$[\frac{7923516800000}{2401},\frac{27710360000}{2401},\frac{2238200}{49}]$ |
$y^2 + (x + 1)y = -x^6 + 4x^5 - 4x^4 - 2x^3 + 10x - 9$ |
784.c.614656.1 |
784.c |
\( 2^{4} \cdot 7^{2} \) |
\( 2^{8} \cdot 7^{4} \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\mathrm{M}_2(\Q)\) |
\(\mathsf{CM}\) |
✓ |
$E_3$ |
|
✓ |
|
$C_6$ |
$D_6$ |
$3$ |
$3$ |
2.240.1, 3.5760.7 |
✓ |
✓ |
$1$ |
\( 3^{2} \) |
\(1.000000\) |
\(5.731485\) |
\(0.358218\) |
$[398,9016,912086,2401]$ |
$[796,2358,-2348,-1857293,614656]$ |
$[\frac{1248318403996}{2401},\frac{9291226221}{4802},-\frac{23245787}{9604}]$ |
$y^2 = x^5 - 4x^4 - 13x^3 - 9x^2 - x$ |