Properties

Label 758059.a.758059.1
Conductor $758059$
Discriminant $758059$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = 2x^3 - 3x^2 - 3x + 2$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = 2x^3z^3 - 3x^2z^4 - 3xz^5 + 2z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^4 + 10x^3 - 11x^2 - 10x + 9$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2, -3, -3, 2]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2, -3, -3, 2], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([9, -10, -11, 10, 2, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(758059\) \(=\) \( 53 \cdot 14303 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(758059\) \(=\) \( 53 \cdot 14303 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(604\) \(=\)  \( 2^{2} \cdot 151 \)
\( I_4 \)  \(=\) \(82729\) \(=\)  \( 82729 \)
\( I_6 \)  \(=\) \(30781947\) \(=\)  \( 3 \cdot 7^{2} \cdot 209401 \)
\( I_{10} \)  \(=\) \(-97031552\) \(=\)  \( - 2^{7} \cdot 53 \cdot 14303 \)
\( J_2 \)  \(=\) \(151\) \(=\)  \( 151 \)
\( J_4 \)  \(=\) \(-2497\) \(=\)  \( - 11 \cdot 227 \)
\( J_6 \)  \(=\) \(-274973\) \(=\)  \( -274973 \)
\( J_8 \)  \(=\) \(-11938983\) \(=\)  \( - 3 \cdot 7 \cdot 568523 \)
\( J_{10} \)  \(=\) \(-758059\) \(=\)  \( - 53 \cdot 14303 \)
\( g_1 \)  \(=\) \(-78502725751/758059\)
\( g_2 \)  \(=\) \(8597048647/758059\)
\( g_3 \)  \(=\) \(6269659373/758059\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((0 : 1 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\)
\((0 : -2 : 1)\) \((1 : 0 : 2)\) \((2 : 0 : 1)\) \((1 : -2 : 1)\) \((4 : 1 : 1)\) \((-2 : 4 : 1)\)
\((-2 : 5 : 1)\) \((5 : -8 : 3)\) \((2 : -11 : 1)\) \((1 : -13 : 2)\) \((4 : -70 : 1)\) \((-1 : 81 : 4)\)
\((-1 : -128 : 4)\) \((5 : -189 : 3)\) \((5 : -224 : 6)\) \((5 : -297 : 6)\) \((16 : -7722 : 21)\) \((16 : -12691 : 21)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((0 : 1 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\)
\((0 : -2 : 1)\) \((1 : 0 : 2)\) \((2 : 0 : 1)\) \((1 : -2 : 1)\) \((4 : 1 : 1)\) \((-2 : 4 : 1)\)
\((-2 : 5 : 1)\) \((5 : -8 : 3)\) \((2 : -11 : 1)\) \((1 : -13 : 2)\) \((4 : -70 : 1)\) \((-1 : 81 : 4)\)
\((-1 : -128 : 4)\) \((5 : -189 : 3)\) \((5 : -224 : 6)\) \((5 : -297 : 6)\) \((16 : -7722 : 21)\) \((16 : -12691 : 21)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\)
\((-2 : -1 : 1)\) \((-2 : 1 : 1)\) \((0 : -3 : 1)\) \((0 : 3 : 1)\) \((2 : -11 : 1)\) \((2 : 11 : 1)\)
\((1 : -13 : 2)\) \((1 : 13 : 2)\) \((4 : -71 : 1)\) \((4 : 71 : 1)\) \((5 : -73 : 6)\) \((5 : 73 : 6)\)
\((5 : -181 : 3)\) \((5 : 181 : 3)\) \((-1 : -209 : 4)\) \((-1 : 209 : 4)\) \((16 : -4969 : 21)\) \((16 : 4969 : 21)\)

magma: [C![-2,4,1],C![-2,5,1],C![-1,-128,4],C![-1,0,1],C![-1,1,1],C![-1,81,4],C![0,-2,1],C![0,1,1],C![1,-13,2],C![1,-2,1],C![1,-1,0],C![1,-1,1],C![1,0,0],C![1,0,2],C![2,-11,1],C![2,0,1],C![4,-70,1],C![4,1,1],C![5,-297,6],C![5,-224,6],C![5,-189,3],C![5,-8,3],C![16,-12691,21],C![16,-7722,21]]; // minimal model
 
magma: [C![-2,-1,1],C![-2,1,1],C![-1,-209,4],C![-1,-1,1],C![-1,1,1],C![-1,209,4],C![0,-3,1],C![0,3,1],C![1,-13,2],C![1,-1,1],C![1,-1,0],C![1,1,1],C![1,1,0],C![1,13,2],C![2,-11,1],C![2,11,1],C![4,-71,1],C![4,71,1],C![5,-73,6],C![5,73,6],C![5,-181,3],C![5,181,3],C![16,-4969,21],C![16,4969,21]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -2 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 - 2z^3\) \(0.788653\) \(\infty\)
\((1 : -2 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.368877\) \(\infty\)
\((-1 : 0 : 1) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0.653970\) \(\infty\)
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.641855\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -2 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 - 2z^3\) \(0.788653\) \(\infty\)
\((1 : -2 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.368877\) \(\infty\)
\((-1 : 0 : 1) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0.653970\) \(\infty\)
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.641855\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -3 : 1) + (1 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + 3xz^2 - 3z^3\) \(0.788653\) \(\infty\)
\((1 : -1 : 1) - (1 : 1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + xz^2 - z^3\) \(0.368877\) \(\infty\)
\((-1 : -1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - xz^2 - z^3\) \(0.653970\) \(\infty\)
\((1 : -1 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 - 3z^3\) \(0.641855\) \(\infty\)

2-torsion field: 6.2.48515776.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(4\)   (upper bound)
Mordell-Weil rank: \(4\)
2-Selmer rank:\(4\)
Regulator: \( 0.094569 \)
Real period: \( 15.68563 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.483376 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(53\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 10 T + 53 T^{2} )\)
\(14303\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 150 T + 14303 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);