Properties

Label 7549.a.7549.1
Conductor 7549
Discriminant -7549
Mordell-Weil group \(\Z \times \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = -2x^4 + 3x^2 - x - 2$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = -2x^4z^2 + 3x^2z^4 - xz^5 - 2z^6$ (dehomogenize, simplify)
$y^2 = x^6 - 6x^4 + 2x^3 + 13x^2 - 2x - 7$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-2, -1, 3, 0, -2]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-2, -1, 3, 0, -2], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([-7, -2, 13, 2, -6, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(7549\) \(=\) \( 7549 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-7549\) \(=\) \( -7549 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(2952\) \(=\)  \( 2^{3} \cdot 3^{2} \cdot 41 \)
\( I_4 \)  \(=\) \(1380\) \(=\)  \( 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
\( I_6 \)  \(=\) \(279144\) \(=\)  \( 2^{3} \cdot 3^{2} \cdot 3877 \)
\( I_{10} \)  \(=\) \(-30920704\) \(=\)  \( - 2^{12} \cdot 7549 \)
\( J_2 \)  \(=\) \(369\) \(=\)  \( 3^{2} \cdot 41 \)
\( J_4 \)  \(=\) \(5659\) \(=\)  \( 5659 \)
\( J_6 \)  \(=\) \(117293\) \(=\)  \( 11 \cdot 10663 \)
\( J_8 \)  \(=\) \(2814209\) \(=\)  \( 953 \cdot 2953 \)
\( J_{10} \)  \(=\) \(-7549\) \(=\)  \( -7549 \)
\( g_1 \)  \(=\) \(-6841192812849/7549\)
\( g_2 \)  \(=\) \(-284327451531/7549\)
\( g_3 \)  \(=\) \(-15970732173/7549\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : -2 : 1)\)
\((2 : -3 : 1)\) \((-2 : 4 : 1)\) \((-2 : 5 : 1)\) \((2 : -8 : 1)\)

magma: [C![-2,4,1],C![-2,5,1],C![-1,0,1],C![-1,1,1],C![1,-2,1],C![1,-1,0],C![1,-1,1],C![1,0,0],C![2,-8,1],C![2,-3,1]];
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \times \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - z^3\) \(0.152213\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.110794\) \(\infty\)

2-torsion field: 6.4.483136.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.016682 \)
Real period: \( 19.31974 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.322300 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(7549\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 148 T + 7549 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).