Properties

Label 7225.b.614125.1
Conductor $7225$
Discriminant $-614125$
Mordell-Weil group \(\Z/{2}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathsf{RM}\)
\(\End(J) \otimes \Q\) \(\mathsf{RM}\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -x^6 - 5x^5 + 67x^3 + 176x^2 + 155x + 32$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -x^6 - 5x^5z + 67x^3z^3 + 176x^2z^4 + 155xz^5 + 32z^6$ (dehomogenize, simplify)
$y^2 = -3x^6 - 20x^5 + 270x^3 + 704x^2 + 620x + 129$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([32, 155, 176, 67, 0, -5, -1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![32, 155, 176, 67, 0, -5, -1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([129, 620, 704, 270, 0, -20, -3]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(7225\) \(=\) \( 5^{2} \cdot 17^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-614125\) \(=\) \( - 5^{3} \cdot 17^{3} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(17140\) \(=\)  \( 2^{2} \cdot 5 \cdot 857 \)
\( I_4 \)  \(=\) \(19045441\) \(=\)  \( 383 \cdot 49727 \)
\( I_6 \)  \(=\) \(73673450257\) \(=\)  \( 11 \cdot 199 \cdot 281 \cdot 119773 \)
\( I_{10} \)  \(=\) \(-78608000\) \(=\)  \( - 2^{7} \cdot 5^{3} \cdot 17^{3} \)
\( J_2 \)  \(=\) \(4285\) \(=\)  \( 5 \cdot 857 \)
\( J_4 \)  \(=\) \(-28509\) \(=\)  \( - 3 \cdot 13 \cdot 17 \cdot 43 \)
\( J_6 \)  \(=\) \(103439169\) \(=\)  \( 3^{2} \cdot 17^{2} \cdot 39769 \)
\( J_8 \)  \(=\) \(110606019021\) \(=\)  \( 3^{3} \cdot 17^{2} \cdot 41 \cdot 345727 \)
\( J_{10} \)  \(=\) \(-614125\) \(=\)  \( - 5^{3} \cdot 17^{3} \)
\( g_1 \)  \(=\) \(-11556973522401425/4913\)
\( g_2 \)  \(=\) \(1055542023861/289\)
\( g_3 \)  \(=\) \(-262874720529/85\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\Q_{17}$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 + 11xz + 3z^2\) \(=\) \(0,\) \(9y\) \(=\) \(-56xz^2 - 21z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 + 11xz + 3z^2\) \(=\) \(0,\) \(9y\) \(=\) \(-56xz^2 - 21z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 + 11xz + 3z^2\) \(=\) \(0,\) \(9y\) \(=\) \(x^3 - 112xz^2 - 41z^3\) \(0\) \(2\)

2-torsion field: 8.0.46240000.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 1.174397 \)
Tamagawa product: \( 2 \)
Torsion order:\( 2 \)
Leading coefficient: \( 1.174397 \)
Analytic order of Ш: \( 2 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(5\) \(2\) \(3\) \(2\) \(( 1 - T )^{2}\)
\(17\) \(2\) \(3\) \(1\) \(( 1 + T )^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.45.1 yes
\(3\) 3.640.4 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);