Properties

Label 7140.a.14280.1
Conductor $7140$
Discriminant $-14280$
Mordell-Weil group \(\Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x + 1)y = 7x^6 + 39x^5 + 2x^4 + 28x^3 - 14x^2 - 8x - 1$ (homogenize, simplify)
$y^2 + (x^2z + xz^2 + z^3)y = 7x^6 + 39x^5z + 2x^4z^2 + 28x^3z^3 - 14x^2z^4 - 8xz^5 - z^6$ (dehomogenize, simplify)
$y^2 = 28x^6 + 156x^5 + 9x^4 + 114x^3 - 53x^2 - 30x - 3$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, -8, -14, 28, 2, 39, 7]), R([1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, -8, -14, 28, 2, 39, 7], R![1, 1, 1]);
 
sage: X = HyperellipticCurve(R([-3, -30, -53, 114, 9, 156, 28]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(7140\) \(=\) \( 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-14280\) \(=\) \( - 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(40716\) \(=\)  \( 2^{2} \cdot 3^{3} \cdot 13 \cdot 29 \)
\( I_4 \)  \(=\) \(-1225313367\) \(=\)  \( - 3 \cdot 449 \cdot 547 \cdot 1663 \)
\( I_6 \)  \(=\) \(-3692075477589\) \(=\)  \( - 3^{3} \cdot 1019 \cdot 134193853 \)
\( I_{10} \)  \(=\) \(1827840\) \(=\)  \( 2^{10} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \)
\( J_2 \)  \(=\) \(10179\) \(=\)  \( 3^{3} \cdot 13 \cdot 29 \)
\( J_4 \)  \(=\) \(55371892\) \(=\)  \( 2^{2} \cdot 13842973 \)
\( J_6 \)  \(=\) \(-90637046256\) \(=\)  \( - 2^{4} \cdot 3 \cdot 199 \cdot 1373 \cdot 6911 \)
\( J_8 \)  \(=\) \(-997160229374872\) \(=\)  \( - 2^{3} \cdot 277 \cdot 389 \cdot 883 \cdot 1310041 \)
\( J_{10} \)  \(=\) \(14280\) \(=\)  \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \)
\( g_1 \)  \(=\) \(36425398951350015633/4760\)
\( g_2 \)  \(=\) \(4866575441726570949/1190\)
\( g_3 \)  \(=\) \(-391295389699815354/595\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\Q_{2}$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(28x^2 - 12xz - 3z^2\) \(=\) \(0,\) \(56y\) \(=\) \(-40xz^2 - 31z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(28x^2 - 12xz - 3z^2\) \(=\) \(0,\) \(56y\) \(=\) \(-40xz^2 - 31z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(28x^2 - 12xz - 3z^2\) \(=\) \(0,\) \(56y\) \(=\) \(x^2z - 79xz^2 - 61z^3\) \(0\) \(2\)

2-torsion field: 8.4.46982799360000.26

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(4\)
Regulator: \( 1 \)
Real period: \( 0.565877 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 1.131754 \)
Analytic order of Ш: \( 8 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(3\) \(1\) \(( 1 - T )( 1 + T )\)
\(3\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 3 T^{2} )\)
\(5\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 2 T + 5 T^{2} )\)
\(7\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 7 T^{2} )\)
\(17\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 2 T + 17 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.45.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);