Properties

Label 707281.a
Conductor $707281$
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathsf{RM}\)
\(\End(J) \otimes \Q\) \(\mathsf{RM}\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more

Genus 2 curves in isogeny class 707281.a

Label Equation
707281.a.707281.1 \(y^2 + (x^3 + x + 1)y = x^5 - 2x^4 - 8x^3 + 3x^2 + 5x + 1\)

L-function data

Analytic rank:\(2\)  (upper bound)
Mordell-Weil rank:\(2\)
 
Bad L-factors:
Prime L-Factor
\(29\)\( 1\)
 
Good L-factors:
Prime L-Factor
\(2\)\( 1 + T + 3 T^{2} + 2 T^{3} + 4 T^{4}\)
\(3\)\( 1 - T + 5 T^{2} - 3 T^{3} + 9 T^{4}\)
\(5\)\( 1 - T - T^{2} - 5 T^{3} + 25 T^{4}\)
\(7\)\( 1 + 9 T^{2} + 49 T^{4}\)
\(11\)\( 1 + 5 T + 27 T^{2} + 55 T^{3} + 121 T^{4}\)
\(13\)\( 1 - 4 T + 25 T^{2} - 52 T^{3} + 169 T^{4}\)
\(17\)\( 1 + 11 T + 63 T^{2} + 187 T^{3} + 289 T^{4}\)
\(19\)\( 1 + 3 T + 29 T^{2} + 57 T^{3} + 361 T^{4}\)
\(23\)\( 1 - 2 T + 42 T^{2} - 46 T^{3} + 529 T^{4}\)
$\cdots$$\cdots$
 
See L-function page for more information

Sato-Tate group

\(\mathrm{ST} =\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism algebra over \(\Q\):

\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{5}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.