Genus 2 curves in isogeny class 707281.a
Label | Equation |
---|---|
707281.a.707281.1 | \(y^2 + (x^3 + x + 1)y = x^5 - 2x^4 - 8x^3 + 3x^2 + 5x + 1\) |
L-function data
Analytic rank: | \(2\) (upper bound) | ||||||||||||||||||||||
Mordell-Weil rank: | \(2\) | ||||||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\times\mathrm{SU}(2)\)
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{5}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.