Properties

Label 70450.c.704500.1
Conductor $70450$
Discriminant $-704500$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -2x^4 + x^3 + 4x^2 - 3x$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -2x^4z^2 + x^3z^3 + 4x^2z^4 - 3xz^5$ (dehomogenize, simplify)
$y^2 = x^6 - 8x^4 + 6x^3 + 16x^2 - 12x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -3, 4, 1, -2]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -3, 4, 1, -2], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, -12, 16, 6, -8, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(70450\) \(=\) \( 2 \cdot 5^{2} \cdot 1409 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-704500\) \(=\) \( - 2^{2} \cdot 5^{3} \cdot 1409 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1012\) \(=\)  \( 2^{2} \cdot 11 \cdot 23 \)
\( I_4 \)  \(=\) \(58105\) \(=\)  \( 5 \cdot 11621 \)
\( I_6 \)  \(=\) \(13468045\) \(=\)  \( 5 \cdot 2693609 \)
\( I_{10} \)  \(=\) \(-90176000\) \(=\)  \( - 2^{9} \cdot 5^{3} \cdot 1409 \)
\( J_2 \)  \(=\) \(253\) \(=\)  \( 11 \cdot 23 \)
\( J_4 \)  \(=\) \(246\) \(=\)  \( 2 \cdot 3 \cdot 41 \)
\( J_6 \)  \(=\) \(20576\) \(=\)  \( 2^{5} \cdot 643 \)
\( J_8 \)  \(=\) \(1286303\) \(=\)  \( 1286303 \)
\( J_{10} \)  \(=\) \(-704500\) \(=\)  \( - 2^{2} \cdot 5^{3} \cdot 1409 \)
\( g_1 \)  \(=\) \(-1036579476493/704500\)
\( g_2 \)  \(=\) \(-1991896071/352250\)
\( g_3 \)  \(=\) \(-329262296/176125\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((-1 : -2 : 1)\)
\((-1 : 2 : 1)\) \((1 : -2 : 1)\) \((2 : -2 : 1)\) \((-3 : 0 : 2)\) \((2 : -7 : 1)\) \((-3 : 8 : 1)\)
\((-1 : 9 : 2)\) \((2 : -9 : 3)\) \((-1 : -16 : 2)\) \((-3 : 18 : 1)\) \((-3 : 19 : 2)\) \((2 : -26 : 3)\)
\((10 : -145 : 3)\) \((10 : -882 : 3)\) \((29 : -1314 : 5)\) \((29 : -23200 : 5)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((-1 : -2 : 1)\)
\((-1 : 2 : 1)\) \((1 : -2 : 1)\) \((2 : -2 : 1)\) \((-3 : 0 : 2)\) \((2 : -7 : 1)\) \((-3 : 8 : 1)\)
\((-1 : 9 : 2)\) \((2 : -9 : 3)\) \((-1 : -16 : 2)\) \((-3 : 18 : 1)\) \((-3 : 19 : 2)\) \((2 : -26 : 3)\)
\((10 : -145 : 3)\) \((10 : -882 : 3)\) \((29 : -1314 : 5)\) \((29 : -23200 : 5)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -2 : 1)\) \((1 : 2 : 1)\)
\((-1 : -4 : 1)\) \((-1 : 4 : 1)\) \((2 : -5 : 1)\) \((2 : 5 : 1)\) \((-3 : -10 : 1)\) \((-3 : 10 : 1)\)
\((2 : -17 : 3)\) \((2 : 17 : 3)\) \((-3 : -19 : 2)\) \((-3 : 19 : 2)\) \((-1 : -25 : 2)\) \((-1 : 25 : 2)\)
\((10 : -737 : 3)\) \((10 : 737 : 3)\) \((29 : -21886 : 5)\) \((29 : 21886 : 5)\)

magma: [C![-3,0,2],C![-3,8,1],C![-3,18,1],C![-3,19,2],C![-1,-16,2],C![-1,-2,1],C![-1,2,1],C![-1,9,2],C![0,-1,1],C![0,0,1],C![1,-2,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![2,-26,3],C![2,-9,3],C![2,-7,1],C![2,-2,1],C![10,-882,3],C![10,-145,3],C![29,-23200,5],C![29,-1314,5]]; // minimal model
 
magma: [C![-3,-19,2],C![-3,-10,1],C![-3,10,1],C![-3,19,2],C![-1,-25,2],C![-1,-4,1],C![-1,4,1],C![-1,25,2],C![0,-1,1],C![0,1,1],C![1,-2,1],C![1,-1,0],C![1,1,0],C![1,2,1],C![2,-17,3],C![2,17,3],C![2,-5,1],C![2,5,1],C![10,-737,3],C![10,737,3],C![29,-21886,5],C![29,21886,5]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.446544\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.411611\) \(\infty\)
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.300988\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.446544\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.411611\) \(\infty\)
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.300988\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\((0 : 1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + z^3\) \(0.446544\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + z^3\) \(0.411611\) \(\infty\)
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 3z^3\) \(0.300988\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 + xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 2xz^2 + z^3\) \(0\) \(2\)

2-torsion field: 6.2.3970562000.2

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(4\)
Regulator: \( 0.046457 \)
Real period: \( 16.52129 \)
Tamagawa product: \( 4 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.767540 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + T + 2 T^{2} )\)
\(5\) \(2\) \(3\) \(2\) \(1 + 3 T + 5 T^{2}\)
\(1409\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 10 T + 1409 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.15.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);