Properties

Label 6982.a.13964.1
Conductor $6982$
Discriminant $-13964$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = x^5 - 3x^3 + 2x$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = x^5z - 3x^3z^3 + 2xz^5$ (dehomogenize, simplify)
$y^2 = x^6 + 4x^5 - 10x^3 + 8x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 2, 0, -3, 0, 1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 2, 0, -3, 0, 1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 8, 0, -10, 0, 4, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(6982\) \(=\) \( 2 \cdot 3491 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-13964\) \(=\) \( - 2^{2} \cdot 3491 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(820\) \(=\)  \( 2^{2} \cdot 5 \cdot 41 \)
\( I_4 \)  \(=\) \(12505\) \(=\)  \( 5 \cdot 41 \cdot 61 \)
\( I_6 \)  \(=\) \(2944285\) \(=\)  \( 5 \cdot 263 \cdot 2239 \)
\( I_{10} \)  \(=\) \(-1787392\) \(=\)  \( - 2^{9} \cdot 3491 \)
\( J_2 \)  \(=\) \(205\) \(=\)  \( 5 \cdot 41 \)
\( J_4 \)  \(=\) \(1230\) \(=\)  \( 2 \cdot 3 \cdot 5 \cdot 41 \)
\( J_6 \)  \(=\) \(8720\) \(=\)  \( 2^{4} \cdot 5 \cdot 109 \)
\( J_8 \)  \(=\) \(68675\) \(=\)  \( 5^{2} \cdot 41 \cdot 67 \)
\( J_{10} \)  \(=\) \(-13964\) \(=\)  \( - 2^{2} \cdot 3491 \)
\( g_1 \)  \(=\) \(-362050628125/13964\)
\( g_2 \)  \(=\) \(-5298301875/6982\)
\( g_3 \)  \(=\) \(-91614500/3491\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\)
\((1 : -2 : 1)\) \((-2 : 3 : 1)\) \((-2 : 4 : 1)\) \((-3 : 12 : 1)\) \((-3 : 14 : 1)\) \((13 : 408 : 5)\)
\((13 : -2730 : 5)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\)
\((1 : -2 : 1)\) \((-2 : 3 : 1)\) \((-2 : 4 : 1)\) \((-3 : 12 : 1)\) \((-3 : 14 : 1)\) \((13 : 408 : 5)\)
\((13 : -2730 : 5)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-2 : -1 : 1)\)
\((-2 : 1 : 1)\) \((1 : -2 : 1)\) \((1 : 2 : 1)\) \((-3 : -2 : 1)\) \((-3 : 2 : 1)\) \((13 : -3138 : 5)\)
\((13 : 3138 : 5)\)

magma: [C![-3,12,1],C![-3,14,1],C![-2,3,1],C![-2,4,1],C![-1,0,1],C![0,-1,1],C![0,0,1],C![1,-2,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![13,-2730,5],C![13,408,5]]; // minimal model
 
magma: [C![-3,-2,1],C![-3,2,1],C![-2,-1,1],C![-2,1,1],C![-1,0,1],C![0,-1,1],C![0,1,1],C![1,-2,1],C![1,-1,0],C![1,1,0],C![1,2,1],C![13,-3138,5],C![13,3138,5]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -2 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.474383\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.015759\) \(\infty\)
Generator $D_0$ Height Order
\((1 : -2 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.474383\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.015759\) \(\infty\)
Generator $D_0$ Height Order
\((1 : -2 : 1) - (1 : 1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.474383\) \(\infty\)
\((-1 : 0 : 1) - (1 : 1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.015759\) \(\infty\)

2-torsion field: 5.3.55856.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.007467 \)
Real period: \( 23.52533 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.351346 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + T + 2 T^{2} )\)
\(3491\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 92 T + 3491 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);