# Properties

 Label 6615.a Conductor $6615$ Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\End(J) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

## Genus 2 curves in isogeny class 6615.a

Label Equation
6615.a.6615.1 $$y^2 + (x^3 + x^2 + 1)y = -2x^3 - 4x^2 - x + 1$$

## L-function data

Analytic rank:$$1$$
Mordell-Weil rank:$$1$$

Prime L-Factor
$$3$$$$1 + T + 3 T^{2}$$
$$5$$$$( 1 - T )( 1 + 3 T + 5 T^{2} )$$
$$7$$$$1 + 7 T^{2}$$

Good L-factors:
Prime L-Factor
$$2$$$$1 + T + T^{2} + 2 T^{3} + 4 T^{4}$$
$$11$$$$( 1 - 2 T + 11 T^{2} )( 1 + 3 T + 11 T^{2} )$$
$$13$$$$( 1 - 4 T + 13 T^{2} )( 1 + 2 T + 13 T^{2} )$$
$$17$$$$1 + 4 T + 25 T^{2} + 68 T^{3} + 289 T^{4}$$
$$19$$$$1 + 4 T + 21 T^{2} + 76 T^{3} + 361 T^{4}$$
$$23$$$$1 + 6 T + 31 T^{2} + 138 T^{3} + 529 T^{4}$$
$$29$$$$1 + 2 T - 14 T^{2} + 58 T^{3} + 841 T^{4}$$
$\cdots$$\cdots$

## Sato-Tate group

$$\mathrm{ST} =$$ $\mathrm{USp}(4)$

## Decomposition of the Jacobian

Simple over $$\overline{\Q}$$

## Endomorphisms of the Jacobian

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism algebra over $$\Q$$:

 $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.