Properties

Label 658560.b.658560.1
Conductor $658560$
Discriminant $-658560$
Mordell-Weil group \(\Z/{2}\Z\)
Sato-Tate group $N(\mathrm{U}(1)\times\mathrm{SU}(2))$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\C \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathsf{CM} \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + xy = -30x^6 - 59x^4 - 37x^2 - 7$ (homogenize, simplify)
$y^2 + xz^2y = -30x^6 - 59x^4z^2 - 37x^2z^4 - 7z^6$ (dehomogenize, simplify)
$y^2 = -120x^6 - 236x^4 - 147x^2 - 28$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-7, 0, -37, 0, -59, 0, -30]), R([0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-7, 0, -37, 0, -59, 0, -30], R![0, 1]);
 
sage: X = HyperellipticCurve(R([-28, 0, -147, 0, -236, 0, -120]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(658560\) \(=\) \( 2^{7} \cdot 3 \cdot 5 \cdot 7^{3} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-658560\) \(=\) \( - 2^{7} \cdot 3 \cdot 5 \cdot 7^{3} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(170184\) \(=\)  \( 2^{3} \cdot 3 \cdot 7 \cdot 1013 \)
\( I_4 \)  \(=\) \(4955055\) \(=\)  \( 3 \cdot 5 \cdot 7 \cdot 41 \cdot 1151 \)
\( I_6 \)  \(=\) \(277414563741\) \(=\)  \( 3 \cdot 7^{2} \cdot 1153 \cdot 1636751 \)
\( I_{10} \)  \(=\) \(82320\) \(=\)  \( 2^{4} \cdot 3 \cdot 5 \cdot 7^{3} \)
\( J_2 \)  \(=\) \(170184\) \(=\)  \( 2^{3} \cdot 3 \cdot 7 \cdot 1013 \)
\( J_4 \)  \(=\) \(1203471374\) \(=\)  \( 2 \cdot 7 \cdot 277 \cdot 310333 \)
\( J_6 \)  \(=\) \(11319223534080\) \(=\)  \( 2^{9} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 11 \cdot 53 \cdot 51593 \)
\( J_8 \)  \(=\) \(119501847471605711\) \(=\)  \( 7^{2} \cdot 2438813213706239 \)
\( J_{10} \)  \(=\) \(658560\) \(=\)  \( 2^{7} \cdot 3 \cdot 5 \cdot 7^{3} \)
\( g_1 \)  \(=\) \(1083847776562356970752/5\)
\( g_2 \)  \(=\) \(45036704217572160408/5\)
\( g_3 \)  \(=\) \(497804412631857408\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\R$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(5x^2 + 4z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(5x^2 + 4z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(5x^2 + 4z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)

2-torsion field: 8.0.173480509440000.49

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(4\)
Regulator: \( 1 \)
Real period: \( 2.002664 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 4.005329 \)
Analytic order of Ш: \( 8 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(7\) \(7\) \(1\) \(1 - T + 2 T^{2}\)
\(3\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 3 T^{2} )\)
\(5\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 5 T^{2} )\)
\(7\) \(3\) \(3\) \(1\) \(1 - T\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.45.1 yes
\(3\) 3.270.2 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $N(\mathrm{U}(1)\times\mathrm{SU}(2))$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{U}(1)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 49.a
  Elliptic curve isogeny class 13440.cl

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{-7}) \) with defining polynomial \(x^{2} - x + 2\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an order of index \(8\) in \(\Z \times \Z [\frac{1 + \sqrt{-7}}{2}]\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q(\sqrt{-7}) \)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\R \times \C\)

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);