L-function data
| Analytic rank: | \(1\) | |||||||||||||||||||||||||||||||||
| Mordell-Weil rank: | \(1\) | |||||||||||||||||||||||||||||||||
| Bad L-factors: |
| |||||||||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||||||||
Sato-Tate group
\(\mathrm{ST} =\) $D_{2,1}$, \(\quad \mathrm{ST}^0 = \mathrm{U}(1)\)
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 256.d
Elliptic curve isogeny class 256.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\zeta_{8})\) with defining polynomial \(x^{4} + 1\)
Endomorphism algebra over \(\overline{\Q}\):
| \(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q(\sqrt{-2}) \)\()\) |
| \(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\C)\) |
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.
Genus 2 curves in isogeny class 65536.a
| Label | Equation |
|---|---|
| 65536.a.65536.1 | \(y^2 = x^5 + x\) |