Properties

Label 65520.a.65520.1
Conductor $65520$
Discriminant $-65520$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x)y = -x^6 - 28x^4 - 336x^2 - 1365$ (homogenize, simplify)
$y^2 + (x^3 + xz^2)y = -x^6 - 28x^4z^2 - 336x^2z^4 - 1365z^6$ (dehomogenize, simplify)
$y^2 = -3x^6 - 110x^4 - 1343x^2 - 5460$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1365, 0, -336, 0, -28, 0, -1]), R([0, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1365, 0, -336, 0, -28, 0, -1], R![0, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([-5460, 0, -1343, 0, -110, 0, -3]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(65520\) \(=\) \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-65520\) \(=\) \( - 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1573720\) \(=\)  \( 2^{3} \cdot 5 \cdot 39343 \)
\( I_4 \)  \(=\) \(96088\) \(=\)  \( 2^{3} \cdot 12011 \)
\( I_6 \)  \(=\) \(50399991420\) \(=\)  \( 2^{2} \cdot 3 \cdot 5 \cdot 839999857 \)
\( I_{10} \)  \(=\) \(262080\) \(=\)  \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
\( J_2 \)  \(=\) \(786860\) \(=\)  \( 2^{2} \cdot 5 \cdot 39343 \)
\( J_4 \)  \(=\) \(25797844802\) \(=\)  \( 2 \cdot 31 \cdot 149 \cdot 179 \cdot 15601 \)
\( J_6 \)  \(=\) \(1127737053817920\) \(=\)  \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \cdot 1553 \cdot 2770783 \)
\( J_8 \)  \(=\) \(55460595434772527999\) \(=\)  \( 463 \cdot 272462809 \cdot 439639097 \)
\( J_{10} \)  \(=\) \(65520\) \(=\)  \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
\( g_1 \)  \(=\) \(3770486200298841428197720000/819\)
\( g_2 \)  \(=\) \(157103494153138593316681400/819\)
\( g_3 \)  \(=\) \(10656851118019203761600\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\R$ and $\Q_{3}$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + 13z^2\) \(=\) \(0,\) \(y\) \(=\) \(6xz^2\) \(0\) \(2\)
\(D_0 - D_\infty\) \(x^2 + 12z^2\) \(=\) \(0,\) \(2y\) \(=\) \(11xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + 13z^2\) \(=\) \(0,\) \(y\) \(=\) \(6xz^2\) \(0\) \(2\)
\(D_0 - D_\infty\) \(x^2 + 12z^2\) \(=\) \(0,\) \(2y\) \(=\) \(11xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + 13z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + 13xz^2\) \(0\) \(2\)
\(D_0 - D_\infty\) \(x^2 + 12z^2\) \(=\) \(0,\) \(2y\) \(=\) \(x^3 + 23xz^2\) \(0\) \(2\)

2-torsion field: 8.0.888731494560000.75

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(5\)
Regulator: \( 1 \)
Real period: \( 4.128135 \)
Tamagawa product: \( 1 \)
Torsion order:\( 4 \)
Leading coefficient: \( 2.064067 \)
Analytic order of Ш: \( 8 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(4\) \(1\) \(1 - T + 2 T^{2}\)
\(3\) \(2\) \(2\) \(1\) \(( 1 - T )^{2}\)
\(5\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 2 T + 5 T^{2} )\)
\(7\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 7 T^{2} )\)
\(13\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 2 T + 13 T^{2} )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.6 yes
\(3\) 3.90.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 48.a
  Elliptic curve isogeny class 1365.e

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);