Properties

Label 6464.a.413696.1
Conductor $6464$
Discriminant $-413696$
Mordell-Weil group \(\Z/{7}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + xy = x^6 - 8x^5 + 21x^4 - 18x^3 - x$ (homogenize, simplify)
$y^2 + xz^2y = x^6 - 8x^5z + 21x^4z^2 - 18x^3z^3 - xz^5$ (dehomogenize, simplify)
$y^2 = 4x^6 - 32x^5 + 84x^4 - 72x^3 + x^2 - 4x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 0, -18, 21, -8, 1]), R([0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 0, -18, 21, -8, 1], R![0, 1]);
 
sage: X = HyperellipticCurve(R([0, -4, 1, -72, 84, -32, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(6464\) \(=\) \( 2^{6} \cdot 101 \)
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(6464,2),R![1, -1]>*])); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-413696\) \(=\) \( - 2^{12} \cdot 101 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(2180\) \(=\)  \( 2^{2} \cdot 5 \cdot 109 \)
\( I_4 \)  \(=\) \(-1403\) \(=\)  \( - 23 \cdot 61 \)
\( I_6 \)  \(=\) \(-1024202\) \(=\)  \( - 2 \cdot 512101 \)
\( I_{10} \)  \(=\) \(-1616\) \(=\)  \( - 2^{4} \cdot 101 \)
\( J_2 \)  \(=\) \(4360\) \(=\)  \( 2^{3} \cdot 5 \cdot 109 \)
\( J_4 \)  \(=\) \(795808\) \(=\)  \( 2^{5} \cdot 13 \cdot 1913 \)
\( J_6 \)  \(=\) \(194608192\) \(=\)  \( 2^{6} \cdot 3040753 \)
\( J_8 \)  \(=\) \(53795336064\) \(=\)  \( 2^{7} \cdot 3 \cdot 140092021 \)
\( J_{10} \)  \(=\) \(-413696\) \(=\)  \( - 2^{12} \cdot 101 \)
\( g_1 \)  \(=\) \(-384655988725000/101\)
\( g_2 \)  \(=\) \(-16103038100500/101\)
\( g_3 \)  \(=\) \(-903179659825/101\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (0 : 0 : 1)\)
All points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (0 : 0 : 1)\)
All points: \((1 : -2 : 0),\, (1 : 2 : 0),\, (0 : 0 : 1)\)

magma: [C![0,0,1],C![1,-1,0],C![1,1,0]]; // minimal model
 
magma: [C![0,0,1],C![1,-2,0],C![1,2,0]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{7}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 4x^2z\) \(0\) \(7\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 4x^2z\) \(0\) \(7\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -2 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(2x^3 - 8x^2z + xz^2\) \(0\) \(7\)

2-torsion field: 5.3.103424.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(0\)
Regulator: \( 1 \)
Real period: \( 9.245055 \)
Tamagawa product: \( 7 \)
Torsion order:\( 7 \)
Leading coefficient: \( 1.320722 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(6\) \(12\) \(7\) \(1 - T\)
\(101\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 18 T + 101 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no
\(7\) not computed yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);