Properties

Label 64000.c.64000.1
Conductor $64000$
Discriminant $64000$
Mordell-Weil group trivial
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + x^2y = x^5 - 10x^3 + 75x^2 + 60x - 665$ (homogenize, simplify)
$y^2 + x^2zy = x^5z - 10x^3z^3 + 75x^2z^4 + 60xz^5 - 665z^6$ (dehomogenize, simplify)
$y^2 = 4x^5 + x^4 - 40x^3 + 300x^2 + 240x - 2660$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-665, 60, 75, -10, 0, 1]), R([0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-665, 60, 75, -10, 0, 1], R![0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-2660, 240, 300, -40, 1, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(64000\) \(=\) \( 2^{9} \cdot 5^{3} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(64000\) \(=\) \( 2^{9} \cdot 5^{3} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(5400\) \(=\)  \( 2^{3} \cdot 3^{3} \cdot 5^{2} \)
\( I_4 \)  \(=\) \(-58611570\) \(=\)  \( - 2 \cdot 3 \cdot 5 \cdot 673 \cdot 2903 \)
\( I_6 \)  \(=\) \(-137361090600\) \(=\)  \( - 2^{3} \cdot 3^{3} \cdot 5^{2} \cdot 25437239 \)
\( I_{10} \)  \(=\) \(8000\) \(=\)  \( 2^{6} \cdot 5^{3} \)
\( J_2 \)  \(=\) \(5400\) \(=\)  \( 2^{3} \cdot 3^{3} \cdot 5^{2} \)
\( J_4 \)  \(=\) \(40289380\) \(=\)  \( 2^{2} \cdot 5 \cdot 877 \cdot 2297 \)
\( J_6 \)  \(=\) \(63851677200\) \(=\)  \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 17736577 \)
\( J_8 \)  \(=\) \(-319608770976100\) \(=\)  \( - 2^{2} \cdot 5^{2} \cdot 19 \cdot 23 \cdot 79967 \cdot 91459 \)
\( J_{10} \)  \(=\) \(64000\) \(=\)  \( 2^{9} \cdot 5^{3} \)
\( g_1 \)  \(=\) \(71744535000000\)
\( g_2 \)  \(=\) \(99126983317500\)
\( g_3 \)  \(=\) \(29092420424250\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0)\)
All points: \((1 : 0 : 0)\)
All points: \((1 : 0 : 0)\)

magma: [C![1,0,0]]; // minimal model
 
magma: [C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: trivial

magma: MordellWeilGroupGenus2(Jacobian(C));
 

2-torsion field: 5.1.256000.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(0\)
Regulator: \( 1 \)
Real period: \( 0.339675 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 3.057077 \)
Analytic order of Ш: \( 9 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(9\) \(9\) \(1\) \(1 - T\)
\(5\) \(3\) \(3\) \(1\) \(1 - T\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.36.1 no
\(3\) 3.2160.6 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);