# Properties

 Label 63707.a.445949.1 Conductor 63707 Discriminant -445949 Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

Show commands for: Magma / SageMath

## Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 2, 6, 1, 0, 1], R![1, 1, 0, 1]);

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 2, 6, 1, 0, 1]), R([1, 1, 0, 1]))

$y^2 + (x^3 + x + 1)y = x^5 + x^3 + 6x^2 + 2x$

## Invariants

 magma: Conductor(LSeries(C)); Factorization($1); $$N$$ = $$63707$$ = $$7 \cdot 19 \cdot 479$$ magma: Discriminant(C); Factorization(Integers()!$1); $$\Delta$$ = $$-445949$$ = $$-1 \cdot 7^{2} \cdot 19 \cdot 479$$

### G2 invariants

magma: G2Invariants(C);

 $$I_2$$ = $$776$$ = $$2^{3} \cdot 97$$ $$I_4$$ = $$377188$$ = $$2^{2} \cdot 7 \cdot 19 \cdot 709$$ $$I_6$$ = $$-4328344$$ = $$-1 \cdot 2^{3} \cdot 31^{2} \cdot 563$$ $$I_{10}$$ = $$-1826607104$$ = $$-1 \cdot 2^{12} \cdot 7^{2} \cdot 19 \cdot 479$$ $$J_2$$ = $$97$$ = $$97$$ $$J_4$$ = $$-3537$$ = $$-1 \cdot 3^{3} \cdot 131$$ $$J_6$$ = $$115493$$ = $$7^{2} \cdot 2357$$ $$J_8$$ = $$-326887$$ = $$-1 \cdot 11 \cdot 29717$$ $$J_{10}$$ = $$-445949$$ = $$-1 \cdot 7^{2} \cdot 19 \cdot 479$$ $$g_1$$ = $$-8587340257/445949$$ $$g_2$$ = $$3228124401/445949$$ $$g_3$$ = $$-22177013/9101$$
Alternative geometric invariants: G2

## Automorphism group

 magma: AutomorphismGroup(C); IdentifyGroup($1); $$\mathrm{Aut}(X)$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1]) magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1); $$\mathrm{Aut}(X_{\overline{\Q}})$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1])

## Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![-6,44,1],C![-6,177,1],C![-3,1,2],C![-3,30,2],C![-2,4,1],C![-2,5,1],C![-1,-93,6],C![-1,-86,6],C![-1,-15,3],C![-1,-2,3],C![-1,-1,1],C![-1,2,1],C![0,-1,1],C![0,0,1],C![1,-5,1],C![1,-1,0],C![1,0,0],C![1,2,1]];

Known rational points: (-6 : 44 : 1), (-6 : 177 : 1), (-3 : 1 : 2), (-3 : 30 : 2), (-2 : 4 : 1), (-2 : 5 : 1), (-1 : -93 : 6), (-1 : -86 : 6), (-1 : -15 : 3), (-1 : -2 : 3), (-1 : -1 : 1), (-1 : 2 : 1), (0 : -1 : 1), (0 : 0 : 1), (1 : -5 : 1), (1 : -1 : 0), (1 : 0 : 0), (1 : 2 : 1)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: $$0$$

## Invariants of the Jacobian:

Analytic rank*: $$3$$

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1); 2-Selmer rank: $$3$$ magma: HasSquareSha(Jacobian(C)); Order of Ш*: square Regulator: 0.0180829793991 Real period: 17.460608522463944941817466836 Tamagawa numbers: 2 (p = 7), 1 (p = 19), 1 (p = 479) magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: $$\mathrm{trivial}$$

### Sato-Tate group

 $$\mathrm{ST}$$ $$\simeq$$ $\mathrm{USp}(4)$ $$\mathrm{ST}^0$$ $$\simeq$$ $$\mathrm{USp}(4)$$

### Decomposition

Simple over $$\overline{\Q}$$

### Endomorphisms

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism ring over $$\Q$$:
 $$\End (J_{})$$ $$\simeq$$ $$\Z$$ $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.