Properties

Label 62563.a.62563.1
Conductor 62563
Discriminant 62563
Mordell-Weil group \(\Z \times \Z \times \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = -3x^4 + x^3 + 3x^2 - x$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = -3x^4z^2 + x^3z^3 + 3x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = x^6 - 10x^4 + 6x^3 + 13x^2 - 2x + 1$ (minimize, homogenize)

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 3, 1, -3], R![1, 1, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 3, 1, -3]), R([1, 1, 0, 1]));
 
magma: X,pi:= SimplifiedModel(C);
 
sage: X = HyperellipticCurve(R([1, -2, 13, 6, -10, 0, 1]))
 

Invariants

Conductor: \( N \)  =  \(62563\) = \( 62563 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  =  \(62563\) = \( 62563 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  = \(2056\) =  \( 2^{3} \cdot 257 \)
\( I_4 \)  = \(234340\) =  \( 2^{2} \cdot 5 \cdot 11717 \)
\( I_6 \)  = \(110702184\) =  \( 2^{3} \cdot 3 \cdot 1709 \cdot 2699 \)
\( I_{10} \)  = \(256258048\) =  \( 2^{12} \cdot 62563 \)
\( J_2 \)  = \(257\) =  \( 257 \)
\( J_4 \)  = \(311\) =  \( 311 \)
\( J_6 \)  = \(21365\) =  \( 5 \cdot 4273 \)
\( J_8 \)  = \(1348521\) =  \( 3 \cdot 107 \cdot 4201 \)
\( J_{10} \)  = \(62563\) =  \( 62563 \)
\( g_1 \)  = \(1121154893057/62563\)
\( g_2 \)  = \(5279098423/62563\)
\( g_3 \)  = \(1411136885/62563\)

magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\)
\((-1 : 1 : 1)\) \((1 : 0 : 3)\) \((1 : -3 : 1)\) \((2 : -5 : 1)\) \((2 : -6 : 1)\) \((3 : -12 : 2)\)
\((-4 : 15 : 1)\) \((3 : -35 : 2)\) \((1 : -37 : 3)\) \((-4 : 52 : 1)\) \((-7 : 4368 : 20)\) \((-7 : -9225 : 20)\)

magma: [C![-7,-9225,20],C![-7,4368,20],C![-4,15,1],C![-4,52,1],C![-1,0,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-37,3],C![1,-3,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![1,0,3],C![2,-6,1],C![2,-5,1],C![3,-35,2],C![3,-12,2]];
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian:

Group structure: \(\Z \times \Z \times \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.392712\) \(\infty\)
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.387128\) \(\infty\)
\((0 : -1 : 1) + (2 : -5 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((-x + 2z) x\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - z^3\) \(0.282553\) \(\infty\)

2-torsion field: 6.2.4004032.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.029057 \)
Real period: \( 21.40327 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.621921 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor
\(62563\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 120 T + 62563 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).