Properties

Label 62411.b.62411.1
Conductor 62411
Discriminant -62411
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, 0, 0, 0, 1], R![1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, 0, 0, 0, 1]), R([1]))
 

$y^2 + y = x^5 - x$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
 
\( N \)  =  \( 62411 \)  =  \( 139 \cdot 449 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 
\( \Delta \)  =  \(-62411\)  =  \( -1 \cdot 139 \cdot 449 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
 

G2 invariants

magma: G2Invariants(C);
 

\( I_2 \)  =  \(-640\)  =  \( -1 \cdot 2^{7} \cdot 5 \)
\( I_4 \)  =  \(-20480\)  =  \( -1 \cdot 2^{12} \cdot 5 \)
\( I_6 \)  =  \(1310720\)  =  \( 2^{18} \cdot 5 \)
\( I_{10} \)  =  \(-255635456\)  =  \( -1 \cdot 2^{12} \cdot 139 \cdot 449 \)
\( J_2 \)  =  \(-80\)  =  \( -1 \cdot 2^{4} \cdot 5 \)
\( J_4 \)  =  \(480\)  =  \( 2^{5} \cdot 3 \cdot 5 \)
\( J_6 \)  =  \(1280\)  =  \( 2^{8} \cdot 5 \)
\( J_8 \)  =  \(-83200\)  =  \( -1 \cdot 2^{8} \cdot 5^{2} \cdot 13 \)
\( J_{10} \)  =  \(-62411\)  =  \( -1 \cdot 139 \cdot 449 \)
\( g_1 \)  =  \(3276800000/62411\)
\( g_2 \)  =  \(245760000/62411\)
\( g_3 \)  =  \(-8192000/62411\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

This curve is locally solvable everywhere.

magma: [C![-15,-4836,16],C![-15,740,16],C![-1,-1,1],C![-1,0,1],C![0,-1,1],C![0,0,1],C![1,-34,4],C![1,-30,4],C![1,-1,1],C![1,0,0],C![1,0,1],C![2,-6,1],C![2,5,1],C![3,-16,1],C![3,15,1],C![30,-4930,1],C![30,4929,1]];
 

Known rational points: (-15 : -4836 : 16), (-15 : 740 : 16), (-1 : -1 : 1), (-1 : 0 : 1), (0 : -1 : 1), (0 : 0 : 1), (1 : -34 : 4), (1 : -30 : 4), (1 : -1 : 1), (1 : 0 : 0), (1 : 0 : 1), (2 : -6 : 1), (2 : 5 : 1), (3 : -16 : 1), (3 : 15 : 1), (30 : -4930 : 1), (30 : 4929 : 1)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

Number of rational Weierstrass points: \(1\)

Invariants of the Jacobian:

Analytic rank*: \(3\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
 

2-Selmer rank: \(3\)

magma: HasSquareSha(Jacobian(C));
 

Order of Ш*: square

Regulator: 0.0527023802937

Real period: 14.170642664579026405487189869

Tamagawa numbers: 1 (p = 139), 1 (p = 449)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
 

Torsion: \(\mathrm{trivial}\)

2-torsion field: 5.3.998576.1

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).