Properties

Label 616510.a.616510.1
Conductor $616510$
Discriminant $-616510$
Mordell-Weil group \(\Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = 5x^6 - 10x^5 - 7x^4 + 3x^3 + 19x^2 + 20x - 34$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = 5x^6 - 10x^5z - 7x^4z^2 + 3x^3z^3 + 19x^2z^4 + 20xz^5 - 34z^6$ (dehomogenize, simplify)
$y^2 = 20x^6 - 40x^5 - 27x^4 + 14x^3 + 77x^2 + 80x - 136$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-34, 20, 19, 3, -7, -10, 5]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-34, 20, 19, 3, -7, -10, 5], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([-136, 80, 77, 14, -27, -40, 20]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(616510\) \(=\) \( 2 \cdot 5 \cdot 61651 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-616510\) \(=\) \( - 2 \cdot 5 \cdot 61651 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(279620\) \(=\)  \( 2^{2} \cdot 5 \cdot 11 \cdot 31 \cdot 41 \)
\( I_4 \)  \(=\) \(-485575103\) \(=\)  \( - 13 \cdot 23 \cdot 31 \cdot 52387 \)
\( I_6 \)  \(=\) \(-45819761475647\) \(=\)  \( - 179 \cdot 571 \cdot 448294783 \)
\( I_{10} \)  \(=\) \(-78913280\) \(=\)  \( - 2^{8} \cdot 5 \cdot 61651 \)
\( J_2 \)  \(=\) \(69905\) \(=\)  \( 5 \cdot 11 \cdot 31 \cdot 41 \)
\( J_4 \)  \(=\) \(223845172\) \(=\)  \( 2^{2} \cdot 31 \cdot 1805203 \)
\( J_6 \)  \(=\) \(1034266956876\) \(=\)  \( 2^{2} \cdot 3^{3} \cdot 6359 \cdot 1505983 \)
\( J_8 \)  \(=\) \(5548442648176799\) \(=\)  \( 7 \cdot 31 \cdot 2593 \cdot 9860725079 \)
\( J_{10} \)  \(=\) \(-616510\) \(=\)  \( - 2 \cdot 5 \cdot 61651 \)
\( g_1 \)  \(=\) \(-333865232753424996188125/123302\)
\( g_2 \)  \(=\) \(-7646671826394497865650/61651\)
\( g_3 \)  \(=\) \(-505416167242523500590/61651\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(5x^2 - 8z^2\) \(=\) \(0,\) \(10y\) \(=\) \(-5xz^2 - 8z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(5x^2 - 8z^2\) \(=\) \(0,\) \(10y\) \(=\) \(-5xz^2 - 8z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(5x^2 - 8z^2\) \(=\) \(0,\) \(10y\) \(=\) \(x^2z - 9xz^2 - 16z^3\) \(0\) \(2\)

2-torsion field: 6.2.243254131264000.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(5\)
Regulator: \( 1 \)
Real period: \( 0.807860 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 3.231440 \)
Analytic order of Ш: \( 16 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - T + 2 T^{2} )\)
\(5\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 3 T + 5 T^{2} )\)
\(61651\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 268 T + 61651 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.15.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);