Properties

Label 61553.a.61553.1
Conductor $61553$
Discriminant $-61553$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = -x^4 - 3x^3 + x^2 + x$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = -x^4z^2 - 3x^3z^3 + x^2z^4 + xz^5$ (dehomogenize, simplify)
$y^2 = x^6 - 2x^4 - 10x^3 + 5x^2 + 6x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 1, -3, -1]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 1, -3, -1], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 6, 5, -10, -2, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(61553\) \(=\) \( 61553 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-61553\) \(=\) \( -61553 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(260\) \(=\)  \( 2^{2} \cdot 5 \cdot 13 \)
\( I_4 \)  \(=\) \(20089\) \(=\)  \( 20089 \)
\( I_6 \)  \(=\) \(257469\) \(=\)  \( 3 \cdot 19 \cdot 4517 \)
\( I_{10} \)  \(=\) \(-7878784\) \(=\)  \( - 2^{7} \cdot 61553 \)
\( J_2 \)  \(=\) \(65\) \(=\)  \( 5 \cdot 13 \)
\( J_4 \)  \(=\) \(-661\) \(=\)  \( -661 \)
\( J_6 \)  \(=\) \(12173\) \(=\)  \( 7 \cdot 37 \cdot 47 \)
\( J_8 \)  \(=\) \(88581\) \(=\)  \( 3 \cdot 29527 \)
\( J_{10} \)  \(=\) \(-61553\) \(=\)  \( -61553 \)
\( g_1 \)  \(=\) \(-1160290625/61553\)
\( g_2 \)  \(=\) \(181527125/61553\)
\( g_3 \)  \(=\) \(-51430925/61553\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((1 : -1 : 1)\)
\((-2 : -1 : 1)\) \((-1 : 1 : 2)\) \((-1 : 2 : 1)\) \((1 : -2 : 1)\) \((-1 : -4 : 2)\) \((3 : -6 : 1)\)
\((-2 : 10 : 1)\) \((-2 : 18 : 3)\) \((-2 : -19 : 3)\) \((3 : -25 : 1)\) \((24 : 266217 : 119)\) \((24 : -2305064 : 119)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((1 : -1 : 1)\)
\((-2 : -1 : 1)\) \((-1 : 1 : 2)\) \((-1 : 2 : 1)\) \((1 : -2 : 1)\) \((-1 : -4 : 2)\) \((3 : -6 : 1)\)
\((-2 : 10 : 1)\) \((-2 : 18 : 3)\) \((-2 : -19 : 3)\) \((3 : -25 : 1)\) \((24 : 266217 : 119)\) \((24 : -2305064 : 119)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\)
\((-1 : -3 : 1)\) \((-1 : 3 : 1)\) \((-1 : -5 : 2)\) \((-1 : 5 : 2)\) \((-2 : -11 : 1)\) \((-2 : 11 : 1)\)
\((3 : -19 : 1)\) \((3 : 19 : 1)\) \((-2 : -37 : 3)\) \((-2 : 37 : 3)\) \((24 : -2571281 : 119)\) \((24 : 2571281 : 119)\)

magma: [C![-2,-19,3],C![-2,-1,1],C![-2,10,1],C![-2,18,3],C![-1,-4,2],C![-1,-1,1],C![-1,1,2],C![-1,2,1],C![0,-1,1],C![0,0,1],C![1,-2,1],C![1,-1,0],C![1,-1,1],C![1,0,0],C![3,-25,1],C![3,-6,1],C![24,-2305064,119],C![24,266217,119]]; // minimal model
 
magma: [C![-2,-37,3],C![-2,-11,1],C![-2,11,1],C![-2,37,3],C![-1,-5,2],C![-1,-3,1],C![-1,5,2],C![-1,3,1],C![0,-1,1],C![0,1,1],C![1,-1,1],C![1,-1,0],C![1,1,1],C![1,1,0],C![3,-19,1],C![3,19,1],C![24,-2571281,119],C![24,2571281,119]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : -1 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(0.597353\) \(\infty\)
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.362615\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.148079\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(0.597353\) \(\infty\)
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.362615\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.148079\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -3 : 1) + (0 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + 3xz^2 + z^3\) \(0.597353\) \(\infty\)
\((0 : 1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 + z^3\) \(0.362615\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 - z^3\) \(0.148079\) \(\infty\)

2-torsion field: 6.4.3939392.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.029513 \)
Real period: \( 20.66583 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.609926 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(61553\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 246 T + 61553 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);