Properties

Label 61099.a.61099.1
Conductor 61099
Discriminant -61099
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -2, 2, 3, -3], R![1, 0, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -2, 2, 3, -3]), R([1, 0, 0, 1]))
 

$y^2 + (x^3 + 1)y = -3x^4 + 3x^3 + 2x^2 - 2x$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
 
\( N \)  =  \( 61099 \)  =  \( 61099 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 
\( \Delta \)  =  \(-61099\)  =  \( -1 \cdot 61099 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
 

G2 invariants

magma: G2Invariants(C);
 

\( I_2 \)  =  \(2472\)  =  \( 2^{3} \cdot 3 \cdot 103 \)
\( I_4 \)  =  \(216420\)  =  \( 2^{2} \cdot 3 \cdot 5 \cdot 3607 \)
\( I_6 \)  =  \(149536488\)  =  \( 2^{3} \cdot 3 \cdot 17 \cdot 366511 \)
\( I_{10} \)  =  \(-250261504\)  =  \( -1 \cdot 2^{12} \cdot 61099 \)
\( J_2 \)  =  \(309\)  =  \( 3 \cdot 103 \)
\( J_4 \)  =  \(1724\)  =  \( 2^{2} \cdot 431 \)
\( J_6 \)  =  \(2184\)  =  \( 2^{3} \cdot 3 \cdot 7 \cdot 13 \)
\( J_8 \)  =  \(-574330\)  =  \( -1 \cdot 2 \cdot 5 \cdot 79 \cdot 727 \)
\( J_{10} \)  =  \(-61099\)  =  \( -1 \cdot 61099 \)
\( g_1 \)  =  \(-2817036000549/61099\)
\( g_2 \)  =  \(-50864256396/61099\)
\( g_3 \)  =  \(-208530504/61099\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

This curve is locally solvable everywhere.

magma: [C![-4,23,1],C![-4,40,1],C![-1,-12,2],C![-1,5,2],C![0,-1,1],C![0,0,1],C![1,-5,2],C![1,-4,2],C![1,-2,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![2,-5,1],C![2,-4,1],C![12,-1336,7],C![12,-735,7]];
 

Known rational points: (-4 : 23 : 1), (-4 : 40 : 1), (-1 : -12 : 2), (-1 : 5 : 2), (0 : -1 : 1), (0 : 0 : 1), (1 : -5 : 2), (1 : -4 : 2), (1 : -2 : 1), (1 : -1 : 0), (1 : 0 : 0), (1 : 0 : 1), (2 : -5 : 1), (2 : -4 : 1), (12 : -1336 : 7), (12 : -735 : 7)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

Number of rational Weierstrass points: \(0\)

Invariants of the Jacobian:

Analytic rank*: \(3\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
 

2-Selmer rank: \(3\)

magma: HasSquareSha(Jacobian(C));
 

Order of Ш*: square

Regulator: 0.0327857591349

Real period: 21.855338502434755251213417220

Tamagawa numbers: 1 (p = 61099)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
 

Torsion: \(\mathrm{trivial}\)

2-torsion field: 6.4.3910336.1

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).