Properties

Label 60916.a.243664.1
Conductor $60916$
Discriminant $-243664$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + x^3y = 2x^3 - x^2 - 2x + 1$ (homogenize, simplify)
$y^2 + x^3y = 2x^3z^3 - x^2z^4 - 2xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 8x^3 - 4x^2 - 8x + 4$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, -2, -1, 2]), R([0, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, -2, -1, 2], R![0, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([4, -8, -4, 8, 0, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(60916\) \(=\) \( 2^{2} \cdot 97 \cdot 157 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-243664\) \(=\) \( - 2^{4} \cdot 97 \cdot 157 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(72\) \(=\)  \( 2^{3} \cdot 3^{2} \)
\( I_4 \)  \(=\) \(933\) \(=\)  \( 3 \cdot 311 \)
\( I_6 \)  \(=\) \(50337\) \(=\)  \( 3^{2} \cdot 7 \cdot 17 \cdot 47 \)
\( I_{10} \)  \(=\) \(30458\) \(=\)  \( 2 \cdot 97 \cdot 157 \)
\( J_2 \)  \(=\) \(72\) \(=\)  \( 2^{3} \cdot 3^{2} \)
\( J_4 \)  \(=\) \(-406\) \(=\)  \( - 2 \cdot 7 \cdot 29 \)
\( J_6 \)  \(=\) \(-31440\) \(=\)  \( - 2^{4} \cdot 3 \cdot 5 \cdot 131 \)
\( J_8 \)  \(=\) \(-607129\) \(=\)  \( -607129 \)
\( J_{10} \)  \(=\) \(243664\) \(=\)  \( 2^{4} \cdot 97 \cdot 157 \)
\( g_1 \)  \(=\) \(120932352/15229\)
\( g_2 \)  \(=\) \(-9471168/15229\)
\( g_3 \)  \(=\) \(-10186560/15229\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\)
\((-1 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : 0 : 2)\) \((1 : -1 : 2)\) \((2 : 1 : 1)\) \((-2 : 3 : 1)\)
\((-2 : 5 : 1)\) \((3 : 5 : 2)\) \((2 : -9 : 1)\) \((-2 : -27 : 3)\) \((3 : -32 : 2)\) \((-2 : 35 : 3)\)
\((-7 : -31625 : 30)\) \((-7 : 31968 : 30)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\)
\((-1 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : 0 : 2)\) \((1 : -1 : 2)\) \((2 : 1 : 1)\) \((-2 : 3 : 1)\)
\((-2 : 5 : 1)\) \((3 : 5 : 2)\) \((2 : -9 : 1)\) \((-2 : -27 : 3)\) \((3 : -32 : 2)\) \((-2 : 35 : 3)\)
\((-7 : -31625 : 30)\) \((-7 : 31968 : 30)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\)
\((0 : -2 : 1)\) \((0 : 2 : 1)\) \((1 : -1 : 2)\) \((1 : 1 : 2)\) \((-2 : -2 : 1)\) \((-2 : 2 : 1)\)
\((2 : -10 : 1)\) \((2 : 10 : 1)\) \((3 : -37 : 2)\) \((3 : 37 : 2)\) \((-2 : -62 : 3)\) \((-2 : 62 : 3)\)
\((-7 : -63593 : 30)\) \((-7 : 63593 : 30)\)

magma: [C![-7,-31625,30],C![-7,31968,30],C![-2,-27,3],C![-2,3,1],C![-2,5,1],C![-2,35,3],C![-1,0,1],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,-1,0],C![1,-1,1],C![1,-1,2],C![1,0,0],C![1,0,1],C![1,0,2],C![2,-9,1],C![2,1,1],C![3,-32,2],C![3,5,2]]; // minimal model
 
magma: [C![-7,-63593,30],C![-7,63593,30],C![-2,-62,3],C![-2,-2,1],C![-2,2,1],C![-2,62,3],C![-1,-1,1],C![-1,1,1],C![0,-2,1],C![0,2,1],C![1,-1,0],C![1,-1,1],C![1,-1,2],C![1,1,0],C![1,1,1],C![1,1,2],C![2,-10,1],C![2,10,1],C![3,-37,2],C![3,37,2]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 + z^3\) \(0.457175\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.301854\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.110995\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 + z^3\) \(0.457175\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.301854\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.110995\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 2 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 4xz^2 + 2z^3\) \(0.457175\) \(\infty\)
\((0 : -2 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 2z^3\) \(0.301854\) \(\infty\)
\((0 : -2 : 1) - (1 : 1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - 2z^3\) \(0.110995\) \(\infty\)

2-torsion field: 6.4.3898624.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.014488 \)
Real period: \( 16.65934 \)
Tamagawa product: \( 3 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.724083 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(4\) \(3\) \(1 + 2 T + 2 T^{2}\)
\(97\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 12 T + 97 T^{2} )\)
\(157\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 2 T + 157 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);