Learn more

Refine search


Results (displaying both matches)

  displayed columns for results
Label Class Conductor Discriminant Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
604.a.9664.1 604.a \( 2^{2} \cdot 151 \) \( 2^{6} \cdot 151 \) $0$ $\mathsf{trivial}$ \(\Q\) $[49556,-797087975,-23996873337603,1236992]$ $[12389,39607304,223396249616,299729401586052,9664]$ $[\frac{291864493641401980949}{9664},\frac{9414430497536890397}{1208},\frac{2143030742187944921}{604}]$ $y^2 + (x^2 + x + 1)y = 4x^5 + 9x^4 + 48x^3 - 4x^2 - 53x - 21$
604.a.9664.2 604.a \( 2^{2} \cdot 151 \) \( 2^{6} \cdot 151 \) $0$ $\Z/27\Z$ \(\Q\) $[116,6265,95277,1236992]$ $[29,-226,836,-6708,9664]$ $[\frac{20511149}{9664},-\frac{2755957}{4832},\frac{175769}{2416}]$ $y^2 + (x^3 + 1)y = -x^4 + x^3 + x^2 - x$
  displayed columns for results