Genus 2 curves in isogeny class 60025.a
Label | Equation |
---|---|
60025.a.420175.1 | \(y^2 + y = x^6 - 5x^5 + 7x^4 - 14x + 12\) |
L-function data
Analytic rank: | \(2\) (upper bound) | ||||||||||||||||||||
Mordell-Weil rank: | \(2\) | ||||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\times\mathrm{SU}(2)\)
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{2}) \) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.