Properties

Label 5911.b.5911.1
Conductor 5911
Discriminant -5911
Mordell-Weil group \(\Z \times \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = -2x^4 + x^3 - x^2$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = -2x^4z^2 + x^3z^3 - x^2z^4$ (dehomogenize, simplify)
$y^2 = x^6 - 6x^4 + 6x^3 - 3x^2 + 2x + 1$ (minimize, homogenize)

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -1, 1, -2], R![1, 1, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -1, 1, -2]), R([1, 1, 0, 1]));
 
magma: X,pi:= SimplifiedModel(C);
 
sage: X = HyperellipticCurve(R([1, 2, -3, 6, -6, 0, 1]))
 

Invariants

Conductor: \( N \)  =  \(5911\) = \( 23 \cdot 257 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  =  \(-5911\) = \( - 23 \cdot 257 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  = \(-312\) =  \( - 2^{3} \cdot 3 \cdot 13 \)
\( I_4 \)  = \(-12060\) =  \( - 2^{2} \cdot 3^{2} \cdot 5 \cdot 67 \)
\( I_6 \)  = \(79848\) =  \( 2^{3} \cdot 3^{2} \cdot 1109 \)
\( I_{10} \)  = \(-24211456\) =  \( - 2^{12} \cdot 23 \cdot 257 \)
\( J_2 \)  = \(-39\) =  \( - 3 \cdot 13 \)
\( J_4 \)  = \(189\) =  \( 3^{3} \cdot 7 \)
\( J_6 \)  = \(1085\) =  \( 5 \cdot 7 \cdot 31 \)
\( J_8 \)  = \(-19509\) =  \( - 3 \cdot 7 \cdot 929 \)
\( J_{10} \)  = \(-5911\) =  \( - 23 \cdot 257 \)
\( g_1 \)  = \(90224199/5911\)
\( g_2 \)  = \(11211291/5911\)
\( g_3 \)  = \(-1650285/5911\)

magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : -1 : 1)\) \((1 : -2 : 1)\)
\((2 : -4 : 1)\) \((2 : -7 : 1)\) \((2 : -9 : 3)\) \((-3 : 11 : 1)\) \((-3 : 18 : 1)\) \((2 : -44 : 3)\)

magma: [C![-3,11,1],C![-3,18,1],C![0,-1,1],C![0,0,1],C![1,-2,1],C![1,-1,0],C![1,-1,1],C![1,0,0],C![2,-44,3],C![2,-9,3],C![2,-7,1],C![2,-4,1]];
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian:

Group structure: \(\Z \times \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.144667\) \(\infty\)
\((0 : 0 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((-x + z) x\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0.095839\) \(\infty\)

2-torsion field: 6.0.206529873031.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.013645 \)
Real period: \( 19.75200 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.269521 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor
\(23\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 3 T + 23 T^{2} )\)
\(257\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + T + 257 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).