Properties

Label 585750.a.585750.1
Conductor $585750$
Discriminant $-585750$
Mordell-Weil group \(\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = -20x^6 + 13x^5 - 61x^4 + 25x^3 - 61x^2 + 13x - 20$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = -20x^6 + 13x^5z - 61x^4z^2 + 25x^3z^3 - 61x^2z^4 + 13xz^5 - 20z^6$ (dehomogenize, simplify)
$y^2 = -80x^6 + 52x^5 - 243x^4 + 102x^3 - 243x^2 + 52x - 80$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-20, 13, -61, 25, -61, 13, -20]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-20, 13, -61, 25, -61, 13, -20], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([-80, 52, -243, 102, -243, 52, -80]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(585750\) \(=\) \( 2 \cdot 3 \cdot 5^{3} \cdot 11 \cdot 71 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-585750\) \(=\) \( - 2 \cdot 3 \cdot 5^{3} \cdot 11 \cdot 71 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1155100\) \(=\)  \( 2^{2} \cdot 5^{2} \cdot 11551 \)
\( I_4 \)  \(=\) \(57987985\) \(=\)  \( 5 \cdot 11 \cdot 1054327 \)
\( I_6 \)  \(=\) \(22180182105575\) \(=\)  \( 5^{2} \cdot 13 \cdot 59^{2} \cdot 223 \cdot 87917 \)
\( I_{10} \)  \(=\) \(74976000\) \(=\)  \( 2^{8} \cdot 3 \cdot 5^{3} \cdot 11 \cdot 71 \)
\( J_2 \)  \(=\) \(288775\) \(=\)  \( 5^{2} \cdot 11551 \)
\( J_4 \)  \(=\) \(3472208860\) \(=\)  \( 2^{2} \cdot 5 \cdot 17 \cdot 29 \cdot 157 \cdot 2243 \)
\( J_6 \)  \(=\) \(55629357672900\) \(=\)  \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 71 \cdot 237427903 \)
\( J_8 \)  \(=\) \(1002033348632299475\) \(=\)  \( 5^{2} \cdot 797 \cdot 50290255891207 \)
\( J_{10} \)  \(=\) \(585750\) \(=\)  \( 2 \cdot 3 \cdot 5^{3} \cdot 11 \cdot 71 \)
\( g_1 \)  \(=\) \(16065267067698561152421875/4686\)
\( g_2 \)  \(=\) \(334460326849742509866250/2343\)
\( g_3 \)  \(=\) \(7919740162986175750\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\R$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(7x^2 - 3xz + 7z^2\) \(=\) \(0,\) \(49y\) \(=\) \(-37xz^2 + 21z^3\) \(0.348037\) \(\infty\)
\(D_0 - D_\infty\) \(5x^2 - 2xz + 5z^2\) \(=\) \(0,\) \(10y\) \(=\) \(-7xz^2 + 5z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(7x^2 - 3xz + 7z^2\) \(=\) \(0,\) \(49y\) \(=\) \(-37xz^2 + 21z^3\) \(0.348037\) \(\infty\)
\(D_0 - D_\infty\) \(5x^2 - 2xz + 5z^2\) \(=\) \(0,\) \(10y\) \(=\) \(-7xz^2 + 5z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(7x^2 - 3xz + 7z^2\) \(=\) \(0,\) \(49y\) \(=\) \(x^2z - 73xz^2 + 42z^3\) \(0.348037\) \(\infty\)
\(D_0 - D_\infty\) \(5x^2 - 2xz + 5z^2\) \(=\) \(0,\) \(10y\) \(=\) \(x^2z - 13xz^2 + 10z^3\) \(0\) \(2\)

2-torsion field: 8.0.3162037824000000.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(5\)
Regulator: \( 0.348037 \)
Real period: \( 2.099589 \)
Tamagawa product: \( 1 \)
Torsion order:\( 2 \)
Leading coefficient: \( 1.461472 \)
Analytic order of Ш: \( 8 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - T + 2 T^{2} )\)
\(3\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 2 T + 3 T^{2} )\)
\(5\) \(3\) \(3\) \(1\) \(1 + T\)
\(11\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 11 T^{2} )\)
\(71\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 71 T^{2} )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.45.1 yes
\(3\) 3.90.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 550.c
  Elliptic curve isogeny class 1065.c

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);