Properties

Label 57065.a.285325.1
Conductor 57065
Discriminant -285325
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, 1, -4, 1], R![1, 1, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, 1, -4, 1]), R([1, 1, 0, 1]))
 

$y^2 + (x^3 + x + 1)y = x^4 - 4x^3 + x^2$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
 
\( N \)  =  \( 57065 \)  =  \( 5 \cdot 101 \cdot 113 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 
\( \Delta \)  =  \(-285325\)  =  \( -1 \cdot 5^{2} \cdot 101 \cdot 113 \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
 

G2 invariants

magma: G2Invariants(C);
 

\( I_2 \)  =  \(456\)  =  \( 2^{3} \cdot 3 \cdot 19 \)
\( I_4 \)  =  \(114468\)  =  \( 2^{2} \cdot 3 \cdot 9539 \)
\( I_6 \)  =  \(11869608\)  =  \( 2^{3} \cdot 3 \cdot 494567 \)
\( I_{10} \)  =  \(-1168691200\)  =  \( -1 \cdot 2^{12} \cdot 5^{2} \cdot 101 \cdot 113 \)
\( J_2 \)  =  \(57\)  =  \( 3 \cdot 19 \)
\( J_4 \)  =  \(-1057\)  =  \( -1 \cdot 7 \cdot 151 \)
\( J_6 \)  =  \(-1299\)  =  \( -1 \cdot 3 \cdot 433 \)
\( J_8 \)  =  \(-297823\)  =  \( -1 \cdot 17 \cdot 17519 \)
\( J_{10} \)  =  \(-285325\)  =  \( -1 \cdot 5^{2} \cdot 101 \cdot 113 \)
\( g_1 \)  =  \(-601692057/285325\)
\( g_2 \)  =  \(195749001/285325\)
\( g_3 \)  =  \(4220451/285325\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

This curve is locally solvable everywhere.

magma: [C![-2,-37,3],C![-2,-4,1],C![-2,13,1],C![-2,36,3],C![-1,-2,1],C![-1,3,1],C![0,-1,1],C![0,0,1],C![1,-12,2],C![1,-2,1],C![1,-1,0],C![1,-1,1],C![1,-1,2],C![1,0,0],C![2,-44,3],C![2,-9,3],C![3,-36,2],C![3,-11,2]];
 

Known rational points: (-2 : -37 : 3), (-2 : -4 : 1), (-2 : 13 : 1), (-2 : 36 : 3), (-1 : -2 : 1), (-1 : 3 : 1), (0 : -1 : 1), (0 : 0 : 1), (1 : -12 : 2), (1 : -2 : 1), (1 : -1 : 0), (1 : -1 : 1), (1 : -1 : 2), (1 : 0 : 0), (2 : -44 : 3), (2 : -9 : 3), (3 : -36 : 2), (3 : -11 : 2)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

Number of rational Weierstrass points: \(0\)

Invariants of the Jacobian:

Analytic rank*: \(3\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
 

2-Selmer rank: \(3\)

magma: HasSquareSha(Jacobian(C));
 

Order of Ш*: square

Regulator: 0.0163429377109

Real period: 17.235344220349315380504303998

Tamagawa numbers: 2 (p = 5), 1 (p = 101), 1 (p = 113)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
 

Torsion: \(\mathrm{trivial}\)

2-torsion field: 6.0.730432.1

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).