Properties

Label 5655.b.491985.1
Conductor $5655$
Discriminant $491985$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = x^5 + 2x^4 - 4x^3 - 3x^2 + 3x$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = x^5z + 2x^4z^2 - 4x^3z^3 - 3x^2z^4 + 3xz^5$ (dehomogenize, simplify)
$y^2 = 4x^5 + 9x^4 - 14x^3 - 11x^2 + 12x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 3, -3, -4, 2, 1]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 3, -3, -4, 2, 1], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([0, 12, -11, -14, 9, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(5655\) \(=\) \( 3 \cdot 5 \cdot 13 \cdot 29 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(491985\) \(=\) \( 3^{2} \cdot 5 \cdot 13 \cdot 29^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(2340\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
\( I_4 \)  \(=\) \(104793\) \(=\)  \( 3 \cdot 13 \cdot 2687 \)
\( I_6 \)  \(=\) \(77140845\) \(=\)  \( 3^{2} \cdot 5 \cdot 1714241 \)
\( I_{10} \)  \(=\) \(62974080\) \(=\)  \( 2^{7} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29^{2} \)
\( J_2 \)  \(=\) \(585\) \(=\)  \( 3^{2} \cdot 5 \cdot 13 \)
\( J_4 \)  \(=\) \(9893\) \(=\)  \( 13 \cdot 761 \)
\( J_6 \)  \(=\) \(101565\) \(=\)  \( 3^{2} \cdot 5 \cdot 37 \cdot 61 \)
\( J_8 \)  \(=\) \(-9613981\) \(=\)  \( - 13 \cdot 19 \cdot 38923 \)
\( J_{10} \)  \(=\) \(491985\) \(=\)  \( 3^{2} \cdot 5 \cdot 13 \cdot 29^{2} \)
\( g_1 \)  \(=\) \(117117950625/841\)
\( g_2 \)  \(=\) \(3385631925/841\)
\( g_3 \)  \(=\) \(59415525/841\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1),\, (-3 : -3 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : -1 : 1),\, (-3 : -3 : 1)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : 0 : 1),\, (-3 : 0 : 1)\)

magma: [C![-3,-3,1],C![0,0,1],C![1,-1,1],C![1,0,0]]; // minimal model
 
magma: [C![-3,0,1],C![0,0,1],C![1,0,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(4\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x^2 + xz - 4z^2\) \(=\) \(0,\) \(8y\) \(=\) \(-3xz^2 - 4z^3\) \(0\) \(2\)
\((-3 : -3 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (x + 3z)\) \(=\) \(0,\) \(2y\) \(=\) \(xz^2 - 3z^3\) \(0\) \(2\)
\((-3 : -3 : 1) - (1 : 0 : 0)\) \(x + 3z\) \(=\) \(0,\) \(y\) \(=\) \(-3z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x^2 + xz - 4z^2\) \(=\) \(0,\) \(8y\) \(=\) \(-3xz^2 - 4z^3\) \(0\) \(2\)
\((-3 : -3 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (x + 3z)\) \(=\) \(0,\) \(2y\) \(=\) \(xz^2 - 3z^3\) \(0\) \(2\)
\((-3 : -3 : 1) - (1 : 0 : 0)\) \(x + 3z\) \(=\) \(0,\) \(y\) \(=\) \(-3z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x^2 + xz - 4z^2\) \(=\) \(0,\) \(8y\) \(=\) \(x^2z - 5xz^2 - 8z^3\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \((x - z) (x + 3z)\) \(=\) \(0,\) \(2y\) \(=\) \(x^2z + 3xz^2 - 6z^3\) \(0\) \(2\)
\((-3 : 0 : 1) - (1 : 0 : 0)\) \(x + 3z\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2 - 6z^3\) \(0\) \(2\)

2-torsion field: \(\Q(\sqrt{65}) \)

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(3\)
Regulator: \( 1 \)
Real period: \( 16.06214 \)
Tamagawa product: \( 4 \)
Torsion order:\( 8 \)
Leading coefficient: \( 1.003884 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + 3 T^{2} )\)
\(5\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 2 T + 5 T^{2} )\)
\(13\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 2 T + 13 T^{2} )\)
\(29\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 2 T + 29 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.360.2 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);