Properties

Label 5360.a
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Genus 2 curves in isogeny class 5360.a

Label Equation
5360.a.686080.1 \(y^2 + (x^3 + x)y = x^4 - x^3 - 2x^2 + x + 1\)

L-function data

Analytic rank:\(1\)
Mordell-Weil rank:\(1\)
 
Bad L-factors:
Prime L-Factor
\(2\)\( 1 - T\)
\(5\)\( ( 1 - T )( 1 + 4 T + 5 T^{2} )\)
\(67\)\( ( 1 - T )( 1 - 12 T + 67 T^{2} )\)
 
Good L-factors:
Prime L-Factor
\(3\)\( ( 1 + T + 3 T^{2} )( 1 + 3 T + 3 T^{2} )\)
\(7\)\( 1 + T + 3 T^{2} + 7 T^{3} + 49 T^{4}\)
\(11\)\( 1 + 5 T + 17 T^{2} + 55 T^{3} + 121 T^{4}\)
\(13\)\( 1 + 13 T^{2} + 169 T^{4}\)
\(17\)\( 1 + T^{2} + 289 T^{4}\)
\(19\)\( 1 + 6 T + 20 T^{2} + 114 T^{3} + 361 T^{4}\)
\(23\)\( 1 + T - 36 T^{2} + 23 T^{3} + 529 T^{4}\)
\(29\)\( 1 + 4 T + 19 T^{2} + 116 T^{3} + 841 T^{4}\)
$\cdots$$\cdots$
 
See L-function page for more information

Sato-Tate group

\(\mathrm{ST} =\) $\mathrm{USp}(4)$

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism algebra over \(\Q\):

\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.